• Title/Summary/Keyword: Gallium arsenide(GaAs)

Search Result 40, Processing Time 0.03 seconds

The Effects of Low Power Laser for the Expression of Epithelial Growth Factor in the Burned Skin of the Rats (흰쥐의 피부화상 후 저강도 레이저 조사가 표피성장인자의 발현에 미치는 영향)

  • Lee Sun-Min;Koo Hyun-Mo;Nam Ki-Won;Kim Souk-Boum;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.3
    • /
    • pp.226-237
    • /
    • 2002
  • This study was performed to investigate the effect of low power laser irradiation on epidermal growth factor(EGF) expression in the burned skin of the rats. Burns of about 3cm in diameter were created with 75'c water on the back of the rats, and the lesion of experimental group were irradiated on days 1, 2, and 3 postwounding. Control tensions were not irradiated. After burns, low power laser irradiation was applied by using 1000Hz, 830nm GaAlAs (Gallium-aluminum- arsenide) semiconductor diode laser. The expression of epidermal growth factor evaluated immunohistochemistry on mouse anti-EGF. The results of this study were as follows 1. In expression of EGF, the lesion of experimental group made EGF to more induce significantly than control tensions. 2. EGF immunoreactivity in burned skin were increased markedly 3 days after burns, and increased gradually from 1 day to 2 days in burns which is laser irradiation These data suggest that low power laser have wound healing effect in the burned skin of the rats.

  • PDF

Effects of Low Power Laser for the Expression of Substance P in the Burned Skin of the Rats (흰쥐의 피부화상 후 저강도 레이저 조사가 Substance P의 발현에 미치는 영향)

  • Koo Hyun-Mo;Lee Sun-Min;Nam Ki-Won;Kim Souk-Boum;Cheon Song-Hee;Kang Jong-Ho;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.239-250
    • /
    • 2003
  • This study was performed to investigate the effect of low power laser irradiation on Substance P(SP) expression in the burned skin of the rats. Burns of about 3cm in diameter were created with $75^{\cric}C$ water on the back of the rats, and the lesion of experimental group were irradiated on days 1, 2, 3 and 4 postwounding. Control leasions were not irradiated. After burns, low power laser irradiation was applied by using 1000Hz, 830nm GaAlAs(Gallium-aluminum-arsenide) semiconductor diode laser. The expression of evaluated Substance P(SP) immunohistochemistry on rabbit anti-SP The results of this study wereas follows 1. The Substance P was expressed in the lamina I and II of dorsal horn of spinal cord. In expression of SP, the lesion of control group made SP to more induce significantly than experimental leasions. 2. SP immunoreactivity in burned leasion of spinal cord were decreased markedly 4 days after burns, and decreased gradually from 1 day to 2 days in burns which is laser irradiation These data suggest that low power laser have a pain release effect in the burned skin of the rats.

  • PDF

Melt-solid interface and segregation in horizontal bridgman growth using 2 - and 3 - dimensional pseudo - steady - state model (2차원 및 3차원 정상상태 모델에 의한 수평브릿지만 결정성장에서의 고 - 액 계면과 편석)

  • 민병수;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.306-317
    • /
    • 1995
  • Abstract Gallium arsenide crystal is usually grown from the melt by the horizontal Bridgman method. We constructed pseudo - steady - state model for crystal growth of GaAs which inclue melt, crystal and the free interface. Mathematical equations of the model were solved for flow, temperature, and concentration field in the melt and temperature field in the crystal. The location and shape of the interface were also solved simultaneously. In 2 - dimensional model, the shape of the interface is flat with adiabatic thermal boundary condition, but it becomes curved with completely conducting thermal boundary condition. In 3 - dimensional model, the interface is less curved than 2 - dimensional case and the flow intensity is similar to that of 2 - dimensional case. With the increase of flow intensity vertical segregation shows maximum value in both 2 - and 3 - D model. However, the maximum value occurs in lower flow intensity in 2 - D model because the interface is more curved for the same flow intensity.

  • PDF

Characteristics of Power Amplifier for Energy Efficient Broadcasting Services (에너지 효율적 차세대 방송망 구축을 위한 증폭기 특성과 신호 모델)

  • Han, Jae-Shin;Jeon, Sungho;Choi, Jeong-Min;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.884-894
    • /
    • 2013
  • In this paper, we investigate the characteristics of power amplifiers and simplified memoryless non-linear power amplifier models for energy efficient communication system. First, we present the transfer function of GaAs FET (Gallium Arsenide Field Effect Transistor) that is widely used for high power amplifier. From those investigations, we introduce the instantaneous efficiencies and methods of amplification by assuming that the saturated current is constant, while perfect linearity is exploited under knee voltage. Then, we discuss four non-linear power amplifier models in a baseband signal processing. Finally, we explain the specified total power consumption model in a base station to achieve the resonable analysis for energy efficient communication.

Low-level laser therapy affects osseointegration in titanium implants: resonance frequency, removal torque, and histomorphometric analysis in rabbits

  • Kim, Jong-Ryoul;Kim, Sung-Hee;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.1
    • /
    • pp.2-8
    • /
    • 2016
  • Objectives: The purpose of this study was to investigate the effects of low-level laser therapy (LLLT) with a diode gallium-aluminum-arsenide (Ga-Al-As) low-level laser device on the healing and attachment of titanium implants in bone. Materials and Methods: Thirteen New Zealand white male rabbits weighing $3.0{\pm}0.5kg$ were used for this study. Dental titanium implants (3.75 mm in diameter and 8.5 mm in length, US II RBM plus fixture; Osstem, Seoul, Korea) were implanted into both femurs of each rabbit. The rabbits were randomly divided into a LLLT group and a control group. The LLLT was initiated immediately after surgery and then repeated daily for 7 consecutive days in the LLLT group. Six weeks and 12 weeks after implantation, we evaluated and compared the osseointegration of the LLLT group and control group, using histomorphometric analysis, removal torque testing, and resonance frequency analysis (RFA). The results were statistically significant when the level of probability was 0.05 or less based on a non-parametric Mann-Whitney U-test. Results: The implant survival rate was about 96%. Histologically and histomorphometrically, we observed that the titanium implants were more strongly attached in LLLT group than in control group. However, there was no significant difference between the LLLT group and control group in removal torque or RFA. Conclusion: Histologically, LLLT might promote cell-level osseointegration of titanium implants, but there was no statistically significant effects.

Effects of Low Power Laser for the Expression of EGF after Muscle Crush Injury (저강도레이저 조사가 근육압좌손상 후 척수분절의 EGF 발현에 미치는 영향)

  • Kim Souk-Boum;Kim Dong-Hyun;Nam Ki-Won;Lee Sun-Min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.16-25
    • /
    • 2002
  • Low energy laser irradiation(LELI) therapy in physical therapy is widespread but the mechanisms are not fully understood. The purpose of the present study was to examine the epidermal growth factor(EGF)'s expression within lumbar spinal cord which corresponding with crushed extensor digitorum longus(EDL) of rats after low-power laser irradiation applied. After a crushed injury on the right EDL, low-power laser irradiation was applied by using 2000mW, 2000Hz, 830nm GaAlAs(Gallium-aluminum-arsenide) semiconductor diode laser. The laser treatment was performed with 10 minutes daily for 3days. After EDL crush injury, EGF immunoreactive positive neurons in experimental group were progressively decreased from the first to third days. Especially 1 day subgroup is highly expressed in dorsal horn(Lamina I, II, III) and around of central cannal of spinal cord(Lamina VII). Control group was only expressed slightly at 3 days. This study suggests that LELI stimulate that release and migration of EGF in spinal cord, which distict to wound site, therfore promote wound healing of EDL crush injury.

  • PDF

Effectiveness of low-level laser therapy and chewing gum in reducing orthodontic pain: A randomized controlled trial

  • Celebi, Fatih;Bicakci, Ali Altug;Kelesoglu, Ufuk
    • The korean journal of orthodontics
    • /
    • v.51 no.5
    • /
    • pp.313-320
    • /
    • 2021
  • Objective: The purpose of this study was to evaluate the effects of chewing gum and low-level laser therapy in alleviating orthodontic pain induced by the initial archwire. Methods: Patients with 3-6 mm maxillary crowding who planned to receive non-extraction orthodontic treatment were recruited for the study. Sixty-three participants (33 females and 30 males) were randomly allocated into three groups: laser, chewing gum, and control. In the laser group, a gallium aluminum arsenide (GaAlAs) diode laser with a wavelength of 820 nm was used to apply a single dose immediately after orthodontic treatment began. In the chewing gum group, sugar-free gum was chewed three times for 20 minutes-immediately after starting treatment, and at the twenty-fourth and forty-eighth hours of treatment. Pain perception was measured using a visual analog scale at the second, sixth, and twenty-fourth hours, and on the second, third, and seventh days. Results: There were no statistically significant differences between the groups at any measured time point (p > 0.05). The highest pain scores were detected at the twenty-fourth hour of treatment in all groups. Conclusions: Within the limitations of the study, we could not detect whether low-level laser therapy and chewing gum had any clinically significant effect on orthodontic pain. Different results may be obtained with a higher number of participants or using lasers with different wavelengths and specifications. Although the study had a sufficient number of participants according to statistical analysis, higher number of participants could have provided more definitive outcomes.

Influence of Diode Laser (808 nm) on a Rat Anterior Cruciate Ligament Transection Model of Osteoarthritis (전십자인대 단열을 통한 랫드 골관절염모델에서 다이오드레이져 (808 nm)의 영향)

  • Park, Seongkyu;Minar, Maruf;Hwang, Yawon;Kim, Somin;Park, Minhyeok;Choi, Seok-Hwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.30 no.5
    • /
    • pp.346-352
    • /
    • 2013
  • The study was aimed to investigate the influence of diode laser on osteoarthritis (OA) of stifle joint induced by anterior cruciate ligament transection (ACLT). Sixty 10-week-old male Sprague-Dawley rats were used in this study. Right stifle joint was operated to create ACLT or sham. There were five study groups: control, Sham, ACLT, ACLT + Laser irradiation (ACLT+L) and ACLT + meloxicam administration (ACLT+M). Low-level laser therapy (LLLT) was applied at the operated stifle joint twice a week using an 808-nm indium-gallium-arsenide (InGaAs) diode laser during 8-week experimental period. Radiographical, gross morphological and histopathological findings were examined at 2, 4 and 8 weeks post-surgery. Radiography, CBC and chemistry tests showed no significant difference between groups. ACLT+L group showed remarkable cartilage damages compared with sham group morphologically and histopathologically at 2, 4 and 8 weeks after surgery. ACLT+M group also had more cartilage damages compared with sham group. Low-level laser therapy (LLLT) showed limitation to prevent progression of OA in the rat anterior cruciate ligament transection models; on the contrary it accelerated cartilage damage. It is assumed that the aggravating results of LLLT in this study might be due to excessive unstable movement of stifle joint from the pain-relieving effect of LLLT, rather than direct damaging effect of irradiation since LLLT did not affect cell viability.

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Electrophysiological Changes after Low-Power Infrared Laser Irradiation on Injured Rat Sciatic Nerves (손상된 흰쥐의 좌골신경에 저출력 레이저 조사후 전기생리학적 변화)

  • Bae Chun-Sik;Shin Soo-Beom;Kim Kweon-Young
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.114-119
    • /
    • 2006
  • The purpose of this study was to determine effects of the Ga-As (Gallium-Arsenide) Dens-Bio laser on mechanically injured sciatic nerves of rats. The improvement of the injured rat sciatic nerve was evaluated by measuring of nerve conduction velocity and amplitude of compound muscle action potential. The sciatic nerves of forty male Sprague-Dawley rats were compressed with hemostatic forceps for 30 seconds. The experimental group was divided into 4 subgroups according to the duration of treatment. Lower power infrared laser irradiation was done transcutaneously to the injured sciatic nerve area, 3 minutes daily to each of four treatment groups for 1, 3, 5, and 7 weeks, respectively. Compound muscle action potential and nerve conduction velocity of sciatic nerve were obtained before nerve injury and at 1, 3, 5, and 7 weeks after injury. There were significant difference of the nerve conduction velocity and amplitudes of compound muscle action potential between the treatment group and non-treatment group at 1, 3, and 5 weeks after laser treatment. However, there were no differences found between the electrophysiologic parameters that were measured after 7 weeks in two groups. There was significant correlation between the increment of compound muscle action potential and nerve conduction velocity after time course according to laser treatment. In conclusion, the low power laser treatment had improved the sciatic nerve function, and therefore these results may provide the basic data to clarify the neurological recovery and treatment after incomplete peripheral nerve injury.