• Title/Summary/Keyword: Galerkin spectral method

Search Result 23, Processing Time 0.032 seconds

A COMPARATIVE STUDY BETWEEN DISCONTINUOUS GALERKIN AND SPECTRAL VOLUME METHODS ON STRUCTURED GRIDS (2차원 정렬 격자계에서의 불연속 갤러킨 기법과 Spectral Volume 기법 비교 연구)

  • Koo H. S.;Kim K. H.;Kim C. A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.131-134
    • /
    • 2005
  • Conventional high order interpolation schemes are limitative in several aspects mainly because they need data of neighboring cells at the reconstruction step. However, discontinuous Galerkin method and spectral volume method, two high order flux schemes which will be analyzed and compared in this paper, have an important benefit that they are not necessary to determine the flow gradients from data of neighboring cells or elements. These two schemes construct polynomial of variables within a cell so that even near wall or discontinuity, the high order does not deteriorate.

  • PDF

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

OPTIMIZATION FOR THE BUBBLE STABILIZED LEGENDRE GALERKIN METHODS BY STEEPEST DESCENT METHOD

  • Kim, Seung Soo;Lee, Yong Hun;Oh, Eun Jung
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.755-766
    • /
    • 2014
  • In the discrete formulation of the bubble stabilized Legendre Galerkin methods, the system of equations includes the artificial viscosity term as the parameter. We investigate the estimation of this parameter to get the optimal solution which minimizes the maximum error. Some numerical results are reported.

A Spectral-Galerkin Nodal Method for Salving the Two-Dimensional Multigroup Diffusion Equations

  • Hongwu Cheng;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.157-162
    • /
    • 1996
  • A novel nodal method is developed for the two-dimensional multi-group diffusion equations based on the Spectral-Galerkin approach. In this study, the nodal diffusion equations with Robin boundary condition are reformulated in a weak (variational) form, which is then approximated spatially by choosing appropriate basis functions. For the nodal coupling relations between the neighbouring nodes, the continuity conditions of partial currents are utilized. The resulting discrete systems with sparse structured matrices are solved by the Preconditioned Conjugate Gradient Method (PCG) and sweeping technique. The method is validated on two test problems.

  • PDF

Numerical analysis on two-dimensional vortex merger (이차원 와류 병합에 대한 수치적 연구)

  • Park, Sanghyun;Sheen, DongJin;Chang, Kyoungsik;Kwag, DongGi
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • During flight of the aircraft, the vortex merging phenomenon appears under the certain condition between co-rotating vortices which were generated at the wing tip and lifting-surface. And then these merged vortices at both sides show counter-rotating pattern to affect on the downstream of the aircraft. In this paper, the numerical simulations are conducted assuming this phenomenon in two-dimensional co-rotating or counter-rotating vortices pairs. Two-dimensional incompressible Navier-Stokes equations were converted into Vorticity-Streamfunction form and the Galerkin spectral method was adopted. The third order Runge-Kutta method was used for time integration. The effects on the vortex merger and degree of vortex merger were investigated according to time, Reynolds number, and changes in the distance between two vortices.

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

Frequency-Dependent Characteristics of Shielded Single, Coupled and Edge-Offset Microstrip Structures (차폐된 단일, 결합 및 Edge-Offset 마이크로 스트립 구조의 주파수 의존특성)

  • 홍문환;홍의석;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.6
    • /
    • pp.388-395
    • /
    • 1986
  • Dispersion characteristics of shielded single, coupled and edge-offset microstrip structures are investigated by using hybrid mode analysis with Galerkin's method in the spectral domain. Two new basis functions for the longitudinal strip current are proposed and convergence rates of the solutions for the basis functions are compared. Current distribution of the coupled line is obtaind from that of the single line by using shift theorem of the Fourier transform. In addition, effects of off-centered inner strip conductor on dispersion are also discussed Numerical results include various structual parameters and are compared with other available data and good agreements are observed.

  • PDF

Resonance Characteristics and Radiation Characteristics of a Spherical Patch on a Dielectric Sphere (구형 유전체 위에 있는 구형 패치의 공진 특성과 방사 특성)

  • Jeong, Yi-Ru;Hong, Ic-Pyo;Lee, Myung-Gun;Chun, Hueng-Jae;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • In this paper, the resonance characteristics and radiation characteristics of a spherical patch on a dielectric sphere are analyzed. Resonance characteristics can be obtained from the resonant frequency and the quality factor. Radiation characteristics can be also analyzed from the E-field in the far region. In order to calculate these parameters, spectral domain analysis method is applied. Algebraic equation can be obtained in spectral domain through Vector Legendre transform pair and Galerkin's method. So, efficient calculation is possible numerically. It is investigated that radius, curvature of a spherical patch, and dielectric constant of a dielectric sphere have an effect on characteristics of a spherical patch.

Analysis of Acoustic Propagation using Spectral Parabolic Equation Method (스펙트럴 포물선 방정식 법을 이용한 수중음파 전달해석)

  • Kim, Kook-Hyun;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1996
  • This thesis deals with a method to solve a two-and-one-half-dimensional ($2\frac12$ D) problem, which means that the ocean environment is two-dimensional whereas the source is fully three-dimensionally propagating, including three-dimensional refraction phenomena and three-dimensional back-scattering, using two-dimensional two-way parabolic equation method combined with Fourier synthesis. Two dimensional two-way parabolic equation method uses Galerkin's method for depth and Crank-Nicolson method and alternating direction for range and provides a solution available to range-dependent problem with wave-field back-scattered from discontinuous interface. Since wavenumber, k, is the function of depth and vertical or horizontal range, we can reduce a dimension of three-dimensional Helmholtz equation by Fourier transforming in the range direction. Thus transformed two-dimensional Helmholtz equation is solved through two-way parabolic equation method. Finally, we can have the $2\frac12$ D solution by inverse Fourier transformation of the spectral solution gained from in the last step. Numerical simulation has been carried out for a canonical ocean environment with stair-step bottom in order to test its accuracy using the present analysis. With this spectral parabolic equation method, we have examined three-dimensional acoustic propagation properties in a specified site in the Korean Straits.

  • PDF

A spectral domain analysis of microstrip lines using a residue theorem (유수정리를 이용한 마이크로스트립 선로의 스펙트럼 영역 해석)

  • 문병귀;진경수;박병우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.8-15
    • /
    • 1998
  • An analysis of the microstripline is started as an assumption of the axial & transveral current distribution. Applying the boundary conditions to the scalar wave equations of a electric & magnetic potential, the two simultaneous coupled integral equations are produced. The electronmagnetic fields in microstrip line can be obtained by solving these two coupled integral equaltion. In general, either a numerical analysis method or a Galerkin method was used to solve them. In this paper, a residue theorem is proposed to solve them. The electromagnetic fields are expressed as integral equations for LSE and LSM mode in the spectral domain. Applying a residue theorem to the Fourier transformed equation and Fourier inverse transformed equation which is necessary for interchanging the space domain and the spectral domain, the electromagnetic fields are expressed as algebraic equations whichare relatively easier to handle. the distributions of the electromagnetic field are shown at the range of -5w/2.leq.x.leq.5w/2, 0.lep.y.leq.4h for z=0. It agrees well with the results of the Quasi-TEM mode analysis.

  • PDF