• 제목/요약/키워드: Galerkin methods

검색결과 132건 처리시간 0.021초

Hinged-clamped 보의 확률적 응답특성 (Stochastic Response of a Hinged-Clamped Beam)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제3권1호
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF

다축응력상태 평판의 피로파괴 해석 (Fatigue Failure Analysis of Plates under Multi-axial Loading)

  • 이상호;윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.321-326
    • /
    • 1999
  • In this study, fatigue crack propagation problem of plate under multi-axial loading is mainly considered To analyze this special problem, recently developed technique called EFGM(Element-Free Galerkin Method), one of the Meshfree Methods, and general fatigue crack growth raw herein Paris law are used Using the Implemented scheme, paths of fatigue cracks by constant-amplitude load fluctuation and multiple-crack growth behavior are examined. The failure mechanism of steel plate due to crack propagation is studied. As a result, an algorithm that treats multiple fatigue crack problems is proposed. A numerical example shows that the prediction of growing paths can be achieved successfully and efficiently by proposed algorithm.

  • PDF

HIGHER ORDER OF FULLY DISCREATE SOLUTION FOR PARABOLIC PROBLEM IN $L_{\infty}$

  • Lee, H.Y.;Lee, J.R.
    • Journal of applied mathematics & informatics
    • /
    • 제4권1호
    • /
    • pp.17-30
    • /
    • 1997
  • In this work we approximate the solution of initialboun-dary value problem using a Galerkin-finite element method for the spatial discretization and Implicit Runge-Kutta method for the spatial discretization and implicit Runge-Kutta methods for the time stepping. To deal with the nonlinear term f(x, t, u), we introduce the well-known extrapolation sheme which was used widely to prove the convergence in $L_2$-norm. We present computational results showing that the optimal order of convergence arising under $L_2$-norm will be preserved in $L_{\infty}$-norm.

무요소법에서 가중함수를 수정한 필수경계조건 처리법 (Treatment of Essential Boundary Conditions using Modified Weight Functions in Meshless Method)

  • 강명석;윤성기
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2705-2712
    • /
    • 2000
  • In meshless methods some techniques to impose essential boundary conditions have been developed since the approximations do not satisfy Kronecker delta properties at nodal points. In this study, new scheme for imposing essential boundary conditions is developed. Weight functions are modified by multiplying with auxiliary weight functions and the resulting shape functions satisfy Kronecker delta property on the bound ary nodes. In addition, the resulting shape functions possess and interpolation features on the boundary segments where essential boundary conditions are prescribed. Therefore the essential boundary conditions can be exactly satisfied with the new method. More importantly, the impositions of essential boundary conditions using the present method is relatively easy as in finite element method. Numerical examples show that the method also retains high convergence rate comparable to Lagrange multiplier method.

Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell

  • Kachapi, Sayyid H. Hashemi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.277-294
    • /
    • 2020
  • In current paper, nonlocal (NLT), nonlocal strain gradient (NSGT) and Gurtin-Murdoch surface/interface (GMSIT) theories with classical theory (CT) are utilized to investigate vibration and stability analysis of Double Walled Piezoelectric Nanosensor (DWPENS) based on cylindrical nanoshell. DWPENS simultaneously subjected to direct electrostatic voltage DC and harmonic excitations, structural damping, two piezoelectric layers and also nonlinear van der Waals force. For this purpose, Hamilton's principle, Galerkin technique, complex averaging and with arc-length continuation methods are used to analyze nonlinear behavior of DWPENS. For this work, three nonclassical theories compared with classical theory CT to investigate Dimensionless Natural Frequency (DNF), pull-in voltage, nonlinear frequency response and stability analysis of the DWPENS considering the nonlocal, material length scale, surface/interface (S/I) effects, electrostatic and harmonic excitation.

정사각형 외팔보에서의 일대일 공진 (One to One Resonance on the Quadrangle Cantilever Beam)

  • 김명구;박철희;조종두
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.851-858
    • /
    • 2005
  • The response characteristics of one to one resonance on the quadrangle cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential-integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one-to-one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of non-linearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Nonlinear nitration in the out of plane are also studied.

Finite Element Formulation using Arbitrary Lagrangian Eulerian Method for Saturated Porous Media

  • Park, Taehyo;Jung, Sochan
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 2003
  • Porous media consist of physically and chemically different materials and have an extremely complicated behavior due to the different material properties of each of its constituents. In addition, the internal structure of porous media has generally a complex geometry that makes the description of its mechanical behavior quite complex. Thus, in order to describe and clarify the deformation behavior of porous media, constitutive models for deformation of porous media coupling several effects such as flow of fluids of thermodynamical change need to be developed in frame of Arbitrary Lagrangian Eulerian (ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian methods, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media that are considered for the behavior of solids and fluids. First of all, governing equations for saturated porous media based on ALE description are derived. Then, weak forms of these equations are obtained in order to implement numerical method using finite element method. Finally, Petrov-Galerkin method Is applied to develop finite element formulation.

  • PDF

유한요소 교호법을 이용한 무한 물체에 존재하는 임의 형상의 삼차원 균열 해석 (Analysis of Arbitrarily Shaped Three Dimensional Cracks in an Infinite Body Using the FEAM)

  • 김태순;박재학;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.278-283
    • /
    • 2004
  • Many analysis methods, including finite element method, have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrarily shaped three dimensional cracks in an infinite body, the finite element alternating method is extended. The cracks are modeled as a distribution of displacement discontinuities by the displacement discontinuity method and the symmetric Galerkin boundary element method. Applied the proposed method to several example problems for planner cracks in finite bodies, the accuracy and efficiency of the method were demonstrated.

  • PDF

무요소절점법의 수치해 정도 향상을 위한 연구 (A Study on the Enhancement of the Solution Accuracy of Meshless Particle Method)

  • 이상호;김상효;강용규;박철원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 1997
  • Meshless particle method is a numerical technique which does not use the concept of element. This method can easily handle special engineering problems which cause difficulty in the use of finite element method, however it has a drawback that essential boundary condition is not satisfied. In this paper, several studies for satisfying essential boundary conditions and enhancing the accuracy of solutions are discussed. Particular emphasis is placed on a new numerical technique in which finite elements are used on the boundaries to satisfy the essential boundary conditions and meshless particle method is used in the interior domain. For coupling of the two methods interface elements are introduced into the zone between the subdomains using meshless particle method and finite element method. The shape functions and the approximated displacement functions of the interface element are derived with the ramp function based on the shape function of finite elements. The whole numerical procedures are formulated by Galerkin method. Several numerical examples for enhancing the accuracy of solution in the meshless particle method and a new coupling method are presented.

  • PDF

NURBS-based isogeometric analysis for thin plate problems

  • Shojaee, S.;Valizadeh, N.
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.617-632
    • /
    • 2012
  • An isogeometric approach is presented for static analysis of thin plate problems of various geometries. Non-Uniform Rational B-Splines (NURBS) basis function is applied for approximation of the thin plate deflection, as for description of the geometry. The governing equation based on Kirchhoff plate theory, is discretized using the standard Galerkin method. The essential boundary conditions are enforced by the Lagrange multiplier method. Several typical examples of thin plate and thin plate on elastic foundation are solved and compared with the theoretical solutions and other numerical methods. The numerical results show the robustness and efficiency of the proposed approach.