• Title/Summary/Keyword: Galerkin integration

Search Result 85, Processing Time 0.031 seconds

A Petrov-Galerkin Natural Element Method Securing the Numerical Integration Accuracy

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.94-109
    • /
    • 2006
  • An improved meshfree method called the Petrov-Galerkin natural element (PG-NE) method is introduced in order to secure the numerical integration accuracy. As in the Bubnov-Galerkin natural element (BG-NE) method, we use Laplace interpolation function for the trial basis function and Delaunay triangles to define a regular integration background mesh. But, unlike the BG-NE method, the test basis function is differently chosen, based on the Petrov-Galerkin concept, such that its support coincides exactly with a regular integration region in background mesh. Illustrative numerical experiments verify that the present method successfully prevents the numerical accuracy deterioration stemming from the numerical integration error.

The Petrov-Galerkin Natural Element Method : I. Concepts (페트로프-갤러킨 자연요소법 : I. 개념)

  • Cho, Jin-Rae;Lee , Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2005
  • In this paper, a new meshfree technique which improves the numerical integration accuracy is introduced. This new method called thc Petrov-Galerkin natural clement method(PG-NEM) by authors is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used lot conventional natural clement method called the Bubnov-Galerkin natural element method(BG-NEM). But, unlike the BG-NEM, the test basis function is differently chosen, based on the concept of Petrov-Galerkin, such that its support coincides exactly with a regular integration region in background mesh. Therefore, it is expected that the proposed technique ensures the remarkably improved numerical integration accuracy in comparison with the BG-NEM.

An Adaptive Mesh-Independent Numerical Integration for Meshless Local Petrov-Galerkin Method

  • Cho, Jin-Yeon;Jee, Young-Burm
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.986-998
    • /
    • 2003
  • In this paper, an adaptive numerical integration scheme, which does not need non-overlapping and contiguous integration meshes, is proposed for the MLPG (Meshless Local Petrov-Galerkin) method. In the proposed algorithm, the integration points are located between the neighboring nodes to properly consider the irregular nodal distribution, and the nodal points are also included as integration points. For numerical integration without well-defined meshes, the Shepard shape function is adopted to approximate the integrand in the local symmetric weak form, by the values of the integrand at the integration points. This procedure makes it possible to integrate the local symmetric weak form without any integration meshes (non-overlapping and contiguous integration domains). The convergence tests are performed, to investigate the present scheme and several numerical examples are analyzed by using the proposed scheme.

DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS (압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발)

  • Choi, J.H.;Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

Study on the Natural Element Method using Petrov-Galerkin Concepts (페트로프-갤러킨 개념에 기초한 자연요소법에 관한 연구)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1274-1279
    • /
    • 2003
  • In this paper, a new meshfree technique which improves the numerical integration accuracy is introduced. This new method called the Petrov-Galerkin natural element(PG-NE) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element(BG-NE). But, unlike BG-NE method, the test shape function is differently chosen from the trial shape function. The proposed technique ensures that the numerical integration error is remarkably reduced.

  • PDF

Least-Squares Meshfree Method and Integration Error (최소 제곱 무요소법과 적분 오차)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1605-1612
    • /
    • 2001
  • Least-squares meshfree method is presented. Conventional meshfree methods based on the Galerkin formulation suffer from inaccurate numerical integration. Least-squares formulation exhibits rather different integration-related characteristics. It is demonstrated through numerical examples that least-squares formulation is much more robust to integration errors than the Galerkin's. Therefore efficient meshfree methods can be devised by combining very simple integration algorithms and least-squares formulation.

Efficient Meshfree Analysis Using Stabilized Conforming Nodal Integration for Metal Forming Simulation

  • Han, Kyu-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.943-950
    • /
    • 2010
  • An efficient meshfree method based on a stabilized conforming nodal integration method is developed for elastoplastic contact analysis of metal forming processes. In this approach, strain smoothing stabilization is introduced to eliminate spatial instability in Galerkin meshfree methods when the weak form is integrated by a nodal integration. The gradient matrix associated with strain smoothing satisfies the integration constraint for linear exactness in the Galerkin approximation. Strain smoothing formulation and numerical procedures for path-dependent problems are introduced. Applications of metal forming analysis are presented, from which the computational efficiency has been improved significantly without loss of accuracy.

Adaptive Element-free Galerkin Procedures by Delaunay Triangulation (Delaunay 삼각화를 이용한 적응적 Element-free Galerkin 해석)

  • 이계희;정흥진;최창근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.525-535
    • /
    • 2001
  • In this paper, a new adaptive analysis scheme for element-free Galerkin method(EFGM) is proposed. The novel point of this scheme is that the triangular cell structure based on the Delaunay triangulation is used in the numerical integration and the node adding/removing process. In adaptive analysis with this scheme, there is no need to divide the integration cell and the memory cell structure. For the adaptive analysis of crack propagation, the reconstruction of cell structure by adding and removing the nodes on integration cells based the estimated error should be carried out at every iteration step by the Delaunay triangulation technique. This feature provides more convenient user interface that is closer to the real mesh-free nature of EFGM. The analysis error is obtained basically by calculating the difference between the values of the projected stresses and the original EFG stresses. To evaluate the performance of proposed adaptive procedure, the crack propagation behavior is investigated for several examples.

  • PDF

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

Geometrically Nonlinear Analysis using Petrov-Galerkin Natural Element Method Natural Element Method (페트로프-갤러킨 자연요소법에 의한 기하하적 비선형 해석)

  • 이홍우;조진래
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.333-340
    • /
    • 2004
  • This paper deals with geometric nonlinear analyses using a new meshfree technique which improves the numerical integration accuracy. The new method called the Petrov-Galerkin natural element method (PGNEM) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element method (BGNEM). But, unlike BGNEM, the test shape function is differently chosen from the trial shape function. In the linear static analysis, it is ensured that the numerical integration error of the PGNEM is remarkably reduced. In this paper, the PGNEM is applied to large deformation problems, and the accuracy of the proposed numerical technique is verified through the several examples.

  • PDF