• Title/Summary/Keyword: GaN-HEMT (High Electron Mobility Transistor)

Search Result 56, Processing Time 0.03 seconds

A Dual Gate AlGaN/GaN High Electron Mobility Transistor with High Breakdown Voltages (높은 항복 전압 특성을 가지는 이중 게이트 AlGaN/GaN 고 전자 이동도 트랜지스터)

  • Ha Min-Woo;Lee Seung-Chul;Her Jin-Cherl;Seo Kwang-Seok;Han Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • We have proposed and fabricated a dual gate AlGaN/GaN high electron mobility transistor (HEMT), which exhibits the low leakage current and the high breakdown voltage for the high voltage switching applications. The additional gate between the main gate and the drain is specially designed in order to decrease the electric field concentration at the drain-side of the main gate. The leakage current of the proposed HEMT is decreased considerably and the breakdown voltage increases without sacrificing any other electric characteristics such as the transconductance and the drain current. The experimental results show that the breakdown voltage and the leakage current of proposed HEMT are 362 V and 75 nA while those of the conventional HEMT are 196 V and 428 nA, respectively.

Design of High Efficiency Class-J mode Power Amplifier using GaN HEMT with Broad-band Characteristic (GaN HEMT를 이용한 광대역 고효율 Class-J 모드 전력증폭기 설계)

  • Kim, Jae-Duk;Kim, Hyoung-Jong;Shin, Suk-Woo;Kim, Sang-Hoon;Kim, Bo-Ki;Choi, Jin-Joo;Kim, Sun-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.71-78
    • /
    • 2011
  • In this paper, we describe the design and implementation of a high efficiency and broad-band Class-J mode power amplifier using gallium nitride(GaN) high-electron mobility transistor(HEMT). The matching circuit of proposed class-J mode power amplifier for 2nd harmonic impedance designed to provide pure reactance alone. The measurement results show that output power of $40{\pm}1$ dBm, power-added efficiency of 50%, and drain efficiency of 60% for a continuous wave signal at 1.4 to 2.6 GHz.

S-Band Internally-Matched High Efficiency and High Power Amplifier Using GaN HEMT Die (GaN HEMT Die를 이용한 S-대역 내부 정합형 고효율 고출력 증폭기)

  • Kim, Sang-Hoon;Choi, Jin-Joo;Choi, Gil-Wong;Kim, Hyoung-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.540-545
    • /
    • 2015
  • This paper presents the design, fabrication and measurement results of a S-band internally-matched power amplifier using Gallium Nitride High Electron Mobility Transistor(GaN HEMT) die. In order to fabricate the S-band internally-matched power amplifier, a high dielectric substrate and alumina were used for input/output matching circuits. The measured output power is 55.4 dBm, the drain efficiency is 78 % and the power gain is 11 dB under pulse operation at the frequency of 3 GHz.

High Breakdown-Voltage AlGaN/GaN High Electron Mobility Transistor having a Trapezoidal Gate Structure (사다리꼴 게이트 구조를 갖는 고내압 AlGaN/GaN HEMT)

  • Kim, Jae-Moo;Kim, Su-Jin;Kim, Dong-Ho;Jung, Kang-MIn;Choi, Hong-Goo;Hahn, Cheol-Koo;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.10-14
    • /
    • 2009
  • We propose a trapezoidal gate AlGaN/GaN high electron mobility transistor(HEMT) to improve the breakdown voltage characteristics and its feasibility is investigated by two-dimensional device simulations. The use of a trapezoidal gate structure appears to be quite effective in dispersing the electric fields concentrated near the gate edge on the drain side from the simulation result. We find that a peak value of the electric field along the 2-DEG channel is reduced by 30%, from 4.8 to 3.5 MV/cm and thereby, the breakdown voltage(Vbr) of the proposed AlGaN/GaN HEMT is increased by about 40%, from 49 to 69 V, compared to those of the standard AlGaN/GaN HEMT.

AlGaN/GaN Field Effect Transistor with Gate Recess Structure and HfO2 Gate Oxide (게이트 하부 식각 구조 및 HfO2 절연층이 도입된 AlGaN/GaN 기반 전계 효과 트랜지스터)

  • Kim, Yukyung;Son, Juyeon;Lee, Seungseop;Jeon, Juho;Kim, Man-Kyung;Jang, Soohwan
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.313-319
    • /
    • 2022
  • AlGaN/GaN based HfO2 MOSHEMT (metal oxide semiconductor high electron transistor) with different gate recess depth was simulate to demonstrate a successful normally-off operation of the transistor. Three types of the HEMT structures including a conventional HEMT, a gate-recessed HEMT with 3 nm thick AlGaN layer, and MIS-HEMT without AlGaN layer in the gate region. The conventional HEMT showed a normally-on characteristics with a drain current of 0.35 A at VG = 0 V and VDS = 15 V. The recessed HEMT with 3 nm AlGaN layer exhibited a decreased drain current of 0.15 A under the same bias condition due to the decrease of electron concentration in 2DEG (2-dimensional electron gas) channel. For the last HEMT structure, distinctive normally- off behavior of the transistor was observed, and the turn-on voltage was shifted to 0 V.

Optimization of Ohmic Contact Metallization Process for AlGaN/GaN High Electron Mobility Transistor

  • Wang, Cong;Cho, Sung-Jin;Kim, Nam-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.32-35
    • /
    • 2013
  • In this paper, a manufacturing process was developed for fabricating high-quality AlGaN/GaN high electron mobility transistors (HEMTs) on silicon carbide (SiC) substrates. Various conditions and processing methods regarding the ohmic contact and pre-metal-deposition $BCl_3$ etching processes were evaluated in terms of the device performance. In order to obtain a good ohmic contact performance, we tested a Ti/Al/Ta/Au ohmic contact metallization scheme under different rapid thermal annealing (RTA) temperature and time. A $BCl_3$-based reactive-ion etching (RIE) method was performed before the ohmic metallization, since this approach was shown to produce a better ohmic contact compared to the as-fabricated HEMTs. A HEMT with a 0.5 ${\mu}m$ gate length was fabricated using this novel manufacturing process, which exhibits a maximum drain current density of 720 mA/mm and a peak transconductance of 235 mS/mm. The X-band output power density was 6.4 W/mm with a 53% power added efficiency (PAE).

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong;Lee, Tae-Hun;Kim, Moon-J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.49-53
    • /
    • 2010
  • Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.

Analysis of Current-Voltage characteristics of AlGaN/GaN HEMTs with a Stair-Type Gate structure (계단형 게이트 구조를 이용한 AlGN/GaN HEMT의 전류-전압특성 분석)

  • Kim, Dong-Ho;Jung, Kang-Min;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • We present simulation results on DC characteristics of AlGaN/GaN HEMT having stair-type gate electrodes, in comparison with those of the conventional single gate AlGaN/GaN HEMTs and field-plate enhanced AlGaN/GaN HEMTs. In order to reduce the internal electric field near the gate electrode of conventional HEMT and thereby to increase their DC characteristics, we applied three-layered stacking electrode schemes to the standard AlGaN/GaN HEMT structure. As a result, we found that the internal electric field was decreased by 70% at the same drain bias condition and the transconductance (gm) was improved by 11.4% for the proposed stair-type gate AlGaN/GaN HEMT, compared with those of the conventional single gate and field-plate enhanced AlGaN/GaN HEMTs.

Photoelectrochemical oxidation of AlGaN-GaN HEMT (AlGaN/GaN HEMT의 광화학적 산화)

  • Moon, S.H.;Hong, S.K.;Ahn, H.J.;Lee, J.S.;Shim, K.H.;Yang, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.131-132
    • /
    • 2007
  • An AlGaN/GaN high electron mobility transistor(HEMT) was fabricated and the effect of photoelectrochemical oxidation of AlGaN/GaN surface was investigated. The oxidation of AlGaN surface was done in water at the bias of 10 V under the deep UV light illumination. The sheet resistance of the AlGaN/GaN structure was increased and gate leakage current of the HEMT was decreased by the oxidation. However, the transconductance of the HEMT was not degraded by the oxidation.

  • PDF

A Study on the I-V characteristics of a delta doped short-channel HEMT (단채널 덱타도핑 HEMT의 전압-전류 특성에 대한 2차원적 해석)

  • 이정호;채규수;김민년
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.354-358
    • /
    • 2004
  • In this thesis, an analytical model for Ⅰ-Ⅴ characteristics of an n-AlGaAs/GaAs Delta doped HEMT is proposed. 2-dimensional electron gas density, and conduction band edge profile are calculated from a self-consistent iterative solution of the Poisson equation. Parameters, e.g., the saturation velocity, 2-dimensional electron gas concentration, thickness of the doped and undoped layer(AlGaAs, GaAs, spacer etc.,) are in good agreement with the independent calculations.

  • PDF