• 제목/요약/키워드: GaN substrate

검색결과 369건 처리시간 0.031초

Vapor Transport Epitaxy에 의한 GaN의 성장과 특성 (Growth and Properties of GaN by Vapor Transport Epitaxy)

  • 이재범;김선태
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.479-484
    • /
    • 2006
  • Highly c-axis oriented poly-crystalline GaN with a dimension of $1{\sim}3\;{\mu}m$ was deposited on $c-Al_2O_3$ substrate by vapor transport epitaxy (VTE) method at the temperature range of $900{\sim}1150^{\circ}C$. XRD intensities from (00'2) plane of grown GaNs were increased with reaction conditions which indicate the improvement of the crystal quality. In the PL spectra measured at 10 K, the spectrum composed with the neutral-donor bound exciton-related emission at 3.47 eV, crystal defect-related emission band at 3.42 eV and with its phonon replicas. The fact that intensity of $I_2$ were increased and FWHM were decreased with growth conditions means that the quality of GaN crystals were improved. With this simple VTE technology, we confirm that the GaNs were simply deposited on sapphire substrate and crystal quality related to optical properties of GaN grown by VTE were relatively good. PL emission without deep level emission in spite of polycrystalline structure can be applicable to the fabrication of large area and low cost optical devices using poly-GaN grown by VTE.

전기차 응용을 위한 수직형 GaN 전력반도체 기술 동향 (Technical Trends in Vertical GaN Power Devices for Electric Vehicle Application)

  • 이형석;배성범
    • 전자통신동향분석
    • /
    • 제38권1호
    • /
    • pp.36-45
    • /
    • 2023
  • The increasing demand for ultra-high efficiency of compact power conversion systems for electric vehicle applications has brought GaN power semiconductors to the fore due to their low conduction losses and fast switching speed. In particular, the development of materials and core device processes contributed to remarkable results regarding the publication of vertical GaN power devices with high breakdown voltage. This paper reviews recent advances on GaN material technology and vertical GaN power device technology. The GaN material technology covers the latest technological trends and GaN epitaxial growth technology, while the vertical GaN power device technology examines diodes, Trench FETs, JFETs, and FinFETs and reviews the vertical GaN PiN diode technology developed by ETRI.

Correlation between pit formation and phase separation in thick InGaN film on a Si substrate

  • Woo, Hyeonseok;Jo, Yongcheol;Kim, Jongmin;Cho, Sangeun;Roh, Cheong Hyun;Lee, Jun Ho;Kim, Hyungsang;Hahn, Cheol-Koo;Im, Hyunsik
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1558-1563
    • /
    • 2018
  • We demonstrate improved surface pit and phase separation in thick InGaN grown on a GaN/Si (111) substrate, using plasma-assisted molecular beam epitaxy with an indium modulation technique. The formation of surface pit and compositional inhomogeneity in the InGaN epilayer are investigated using atomic force microscopy, scanning electron microscopy and temperature-dependent photoluminescence. Indium elemental mapping directly reveals that poor compositional homogeneity occurs near the pits. The indium-modulation epitaxy of InGaN minimizes the surface indium segregation, leading to the reduction in pit density and size. The phase separation in InGaN with a higher pit density is significantly suppressed, suggesting that the pit formation and the phase separation are correlated. We propose an indium migration model for the correlation between surface pit and phase separation in InGaN.

Oxygen Plasma Effect on AlGaN/GaN HEMTs Structure Grown on Si Substrate

  • Seo, Dong Hyeok;Kang, Sung Min;Lee, Dong Wha;Ahn, Du Jin;Park, Hee Bin;Ahn, Youn Jun;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Bae, Jin Su;Cho, Hoon Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.420-420
    • /
    • 2013
  • We investigated oxygen plasma effect on defect states near the interface of AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on a silicon substrate. After the plasma treatment, electrical properties were evaluated using a frequency dependant Capacitance-Voltage (C-V) and a temperature dependant C-V measurements, and a deep level transient spectroscopy (DLTS) method to study the change of defect densities. In the depth profile resulted from the temperature dependant C-V, a sudden decrease in the carrier concentration for two-dimensional electron gas (2DEG) nearby 250 K was observed. In C-V measurement, the interface states were improved in case of the oxygen-plasma treated samples, whereas the interface was degraded in case of the nitrogen-plasma treated sample. In the DLTS measurement, it was observed the two kinds of defects well known in AlGaN/GaN structure grown on sapphire substrate, which have the activation energies of 0.15 eV, 0.25 eV below the conduction band. We speculate that this defect state in AlGaN/GaN on the silicon substrate is caused from the decrease in 2DEG's carrier concentrations. We compared the various DLTS signals with filling pulse times to identify the characteristics of the newly found defect. In the filling pulse time range under the 80 us, the activation energies changed as the potential barrier model. On the other hand, in the filling pulse time range above the 80 us, the activation energies changed as the extended potential model. Therefore, we suggest that the found defect in the AlGaN/GaN/Si structure could be the extended defect related with AlGa/N/GaN interface states.

  • PDF

GaAs(100) 기판위에 성장된 AIN 박막의 특성 (The characterization of AlN thin films grown on GaAs(100) substrate)

  • 정성훈;김영호;송복식;문동찬;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 1996
  • AIN thin films were prepared using by Rf sputtering method on the GaAs(170) substrate and investigated by X-ray diffractometer, IR spectroscopy, n&k system. The parameters were the substrate temperature, RF power, sputtering duration and the $N_2$/Ar ratio. The AlN thin films of (101) orientation were obtained under the conditions of room temperature and the nitrogen of 60 vol.%. The crystallinity of the films, which were grown respectively under the different conditions, were determined by the comparison of the band width of an E$_1$[TO:680$cm^{-1}$ /] phonon mode. The thicknesses of AlN films were decreased dramatically in the region of the nitrogen of 40~60 vol.% according to the increment of the $N_2$/Ar ratio by which the sputter yield got lower.

  • PDF

Fabrication of the catalyst free GaN nanorods on Si grown by MOCVD

  • Ko, Suk-Min;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.232-232
    • /
    • 2010
  • Recently light emitting diodes (LEDs) have been expected as the new generation light sources because of their advantages such as small size, long lifetime and energy-saving. GaN, as a wide band gap material, is widely used as a material of LEDs and GaN nanorods are the one of the most widely investigated nanostructure which has advantages for the light extraction of LEDs and increasing the active area by making the cylindrical core-shell structure. Lately GaN nanorods are fabricated by various techniques, such as selective area growth, vapor-liquid-solid (VLS) technique. But these techniques have some disadvantages. Selective area growth technique is too complicated and expensive to grow the rods. And in the case of VLS technique, GaN nanorods are not vertically aligned well and the metal catalyst may act as the impurity. So we just tried to grow the GaN nanorods on Si substrate without catalyst to get the vertically well aligned nanorods without impurity. First we deposited the AlN buffer layer on Si substrate which shows more vertical growth mode than sapphire substrate. After the buffer growth, we flew trimethylgallium (TMGa) as the III group source and ammonia as the V group source. And during the GaN growth, we kept the ammonia flow stable and periodically changed the flow rate of TMGa to change the growth mode of the nanorods. Finally, as the optimization, we changed the various growth conditions such as the growth temperature, the working pressure, V/III ratio and the doping level. And we are still in the process to reduce the diameter of the nanorods and to extend the length of the nanorods simultaneously. In this study, we focused on the shape changing of GaN nanorods with different growth conditions. So we confirmed the shape of the nanorods by scanning electron microscope (SEM) and carried out the Photoluminescence (PL) measurement and x-ray diffraction (XRD) to examine the crystal quality difference between samples. Detailed results will be discussed.

  • PDF

InGaN/Sapphire LED에서 기판 제거 유무와 칩 마운트 타입이 광출력 특성에 미치는 영향 (Analysis of the Effect of the Substrate Removal and Chip-Mount Type on Light Output Characteristics in InGaN/Sapphire LEDs)

  • 홍대운;유재근;김종만;윤명중;이성재
    • 한국광학회지
    • /
    • 제19권5호
    • /
    • pp.381-385
    • /
    • 2008
  • InGaN/Sapphire LED에서 기판 제거와 패키지 방식이 광출력 특성에 미치는 영향을 분석하였다. Sapphire 기판의 제거는 반도체 접합에서 발생된 열의 방출에 도움이 되지만, 반대로 광추출효율이 손상되는 문제점이 수반된다. Sapphire 기판이 제거된 칩을 열전도율이 좋은 금속의 마운트 위에 부착하면, 최대 구동전류는 현저히 증가하고 광출력도 상당히 증가됨으로써, 광추출효율이 손상되는 문제점이 어느 정도 보상된다. 하지만, sapphire 기판이 제거된 칩을 상대적으로 열전도율이 낮은 유전체의 마운트 위에 부착하는 경우에는, 거의 모든 입력전류 범위에서 sapphire 기판이 남아 있는 일반형 칩보다 낮은 광출력을 나타낸다. 따라서, 작은 광출력이 요구되는 응용분야에서는 사용된 칩 마운트의 종류에 무관하게, 일반형 칩이 sapphire 기판이 제거된 칩 보다 유리한 것으로 분석된다.

실리콘 기판과 $CoSi_2$ 버퍼층 위에 HVPE로 저온에서 형성된 GaN의 에피텍셜 성장 연구 (GaN epitaxy growth by low temperature HYPE on $CoSi_2$ buffer/Si substrates)

  • 하준석;박종성;송오성;;장지호
    • 한국결정성장학회지
    • /
    • 제19권4호
    • /
    • pp.159-164
    • /
    • 2009
  • 실리콘 기판에 GaN 에피성장을 확인하기 위해, P형 Si(100), Si(111) 기판 전면에 버퍼층으로 40 nm 두께의 코발트실리사이드를 형성시켰다. 형성된 코발트실리사이드 층에 연속으로 HVPE(hydride vapor phase epitaxy)로 하나는 $850^{\circ}C$-12분 + $1080^{\circ}C$-30분(공정I)과, 또 하나 조건은 $557^{\circ}C$-5분 + $900^{\circ}C$-5분(공정II) 조건으로 각각 나누어 진행하여 보았다. GaN의 에피성장을 광학현미경, 주사전자현미경, 주사탐침현미경, 그리고 HR-XRD로 확인하였다. 공정I로는 GaN의 에피성장이 진행되지 않았으며, 공정II에서는 에피성장이 진행되었다. 특히 공정 II는 열팽창에 의해 실리콘 기판과의 자가정렬적인 기판분리 현상을 보였으며, XRD로 GaN의 0002 방향의 결정성 (crystallinity)을 ${\omega}$-scan으로 확인한 결과(100)면 방향의\ 실리콘과 코발트실리사이드를 버퍼층으로 활용하고 저온에서 HVPE를 진행한 조합이 GaN의 에피성장에 유리하였다.

III족 질화물 반도체의 실온 광여기 유도방출 (Stimulated emission from optically pumped column-III nitride semiconductors at room temperature)

  • 김선태;문동찬
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권3호
    • /
    • pp.272-277
    • /
    • 1995
  • We report the properties of optically pumped stimulated emission at room temperature (RT) from column-III nitride semiconductors of GaN, AlGaN/GaN double heterostructure (DH) and AlGaN/GaInN DH which prepared on a sapphire substrate using an AIN buffer-layer by the nietalorganic vapor phase epitaxy (MOVPE) method. The peak wavelength of the stimulated emission at RT from AIGaN/GaN DH is 369nm and the threshold of excitation pumping power density (P$\_$th/) is about 84kW/cm$\^$2/, and they from AlGaN/GaInN DH are 402nm and 130kW/cm$\^$2/ at the pumping power density of 200kW/cm$\^$2/, respectively. The P$\_$th/ of AIGaN/GaN and AlGaN/GaInN DHs are lower than the single layers of GaN and GaInN due to optical confinement within the active layers of GaN and GaInN, respectively.

  • PDF

Heat Treatment of Carbonized Photoresist Mask with Ammonia for Epitaxial Lateral Overgrowth of a-plane GaN on R-plane Sapphire

  • Kim, Dae-sik;Kwon, Jun-hyuck;Jhin, Junggeun;Byun, Dongjin
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.208-213
    • /
    • 2018
  • Epitaxial ($11{\bar{2}}0$) a-plane GaN films were grown on a ($1{\bar{1}}02$) R-plane sapphire substrate with photoresist (PR) masks using metal organic chemical vapor deposition (MOCVD). The PR mask with striped patterns was prepared using an ex-situ lithography process, whereas carbonization and heat treatment of the PR mask were carried out using an in-situ MOCVD. The heat treatment of the PR mask was continuously conducted in ambient $H_2/NH_3$ mixture gas at $1140^{\circ}C$ after carbonization by the pyrolysis in ambient $H_2$ at $1100^{\circ}C$. As the time of the heat treatment progressed, the striped patterns of the carbonized PR mask shrank. The heat treatment of the carbonized PR mask facilitated epitaxial lateral overgrowth (ELO) of a-plane GaN films without carbon contamination on the R-plane sapphire substrate. Thhe surface morphology of a-plane GaN films was investigated by scanning electron microscopy and atomic force microscopy. The structural characteristics of a-plane GaN films on an R-plane sapphire substrate were evaluated by ${\omega}-2{\theta}$ high-resolution X-ray diffraction. The a-plane GaN films were characterized by X-ray photoelectron spectroscopy (XPS) to determine carbon contamination from carbonized PR masks in the GaN film bulk. After $Ar^+$ ion etching, XPS spectra indicated that carbon contamination exists only in the surface region. Finally, the heat treatment of carbonized PR masks was used to grow high-quality a-plane GaN films without carbon contamination. This approach showed the promising potential of the ELO process by using a PR mask.