DOI QR코드

DOI QR Code

Correlation between pit formation and phase separation in thick InGaN film on a Si substrate

  • Woo, Hyeonseok (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Jo, Yongcheol (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Kim, Jongmin (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Cho, Sangeun (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Roh, Cheong Hyun (Display Materials and Components Research Center, Korea Electronics Technology Institute) ;
  • Lee, Jun Ho (Display Materials and Components Research Center, Korea Electronics Technology Institute) ;
  • Kim, Hyungsang (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Hahn, Cheol-Koo (Display Materials and Components Research Center, Korea Electronics Technology Institute) ;
  • Im, Hyunsik (Division of Physics and Semiconductor Science, Dongguk University)
  • Received : 2018.07.17
  • Accepted : 2018.10.05
  • Published : 2018.12.31

Abstract

We demonstrate improved surface pit and phase separation in thick InGaN grown on a GaN/Si (111) substrate, using plasma-assisted molecular beam epitaxy with an indium modulation technique. The formation of surface pit and compositional inhomogeneity in the InGaN epilayer are investigated using atomic force microscopy, scanning electron microscopy and temperature-dependent photoluminescence. Indium elemental mapping directly reveals that poor compositional homogeneity occurs near the pits. The indium-modulation epitaxy of InGaN minimizes the surface indium segregation, leading to the reduction in pit density and size. The phase separation in InGaN with a higher pit density is significantly suppressed, suggesting that the pit formation and the phase separation are correlated. We propose an indium migration model for the correlation between surface pit and phase separation in InGaN.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF) of Korea

References

  1. H. Woo, Y. Jo, J. Kim, C.H. Roh, J.H. Lee, H. Kim, H. Im, C.-K. Hahn, J. Park, Effect of heating on electrical transport in AlGaN/GaN Schottky barrier diodes on Si substrate, Curr. Appl. Phys. 14 (2014) S98-S102. https://doi.org/10.1016/j.cap.2013.11.015
  2. H. Woo, J. Lee, Y. Jo, J. Han, J. Kim, H. Kim, C.H. Roh, J.H. Lee, J. Park, C.-K. Hahn, H. Im, Barrier lowering and leakage current reduction in Ni-AlGaN/GaN Schottky diodes with an oxygen-treated GaN cap layer, Curr. Appl. Phys. 15 (2015) 1027-1031. https://doi.org/10.1016/j.cap.2015.06.004
  3. B.N. Pantha, J. Li, J.Y. Lin, H.X. Jiang, Evolution of phase separation in In-rich InGaN alloys, Appl. Phys. Lett. 96 (2010) 232105. https://doi.org/10.1063/1.3453563
  4. A. Yamamoto, T.M. Hasan, K. Kodama, S. Shigekawa, M. Kuzuhara, Growth temperature dependent critical thickness for phase separation in thick (${\sim}1{\mu}m$) $In_xGa_{1-x}N$ (x=0.2-0.4), J. Cryst. Growth 419 (2015) 64-68. https://doi.org/10.1016/j.jcrysgro.2015.02.100
  5. H. Woo, H. Jo, J. Kim, S. Cho, Y. Jo, C.H. Roh, J.H. Lee, Y. Seo, J. Park, H. Kim, C.-K. Hahn, H. Im, Phase separation suppression in $In_xGa_{1-x}N$ on a Si substrate using an indium modulation technique, Curr. Appl. Phys. 17 (2017) 1142-1147. https://doi.org/10.1016/j.cap.2017.05.003
  6. Th Kehagias, G.P. Dimitrakopulos, J. Kioseoglou, H. Kirmse, C. Giesen, M. Heuken, A. Georgakilas, W. Neumann, Th Jarakostas, Ph Komninou, Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy, Appl. Phys. Lett. 95 (2009) 071905. https://doi.org/10.1063/1.3204454
  7. S.Y. Woo, M. Bugnet, H.P.T. Nguyen, Z. Mi, G.A. Botton, Atomic ordering in InGaN alloys within nanowire heterostructures, Nano Lett. 15 (2015) 6413. https://doi.org/10.1021/acs.nanolett.5b01628
  8. A. Lotsari, A. Das, T. Kehagias, Y. Kotsar, E. Monroy, T. Karakostas, P. Gladkov, P. Komninou, G.P. Dimitrakopulos, Morphology and origin of V-defects in semipolar (11-22) InGaN, J. Cryst. Growth 339 (2012) 1-7. https://doi.org/10.1016/j.jcrysgro.2011.11.055
  9. C. Bazioti, E. Papadomanolaki, Th Kehagias, T. Walther, J. Smalc-Koziorowska, E. Pavlidou, Ph Komninou, Th Karakostas, E. Iliopoulos, G.P. Dimitrakopulos, Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy, J. Appl. Phys. 118 (2005) 155301.
  10. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Luminescences from localized states in InGaN epilayers, Appl. Phys. Lett. 70 (1997) 2822. https://doi.org/10.1063/1.119013
  11. A. Chakraborty, A. Bag, P. Mukhopadhyay, S. Ghosh, D. Biswas, Elimination of V-shaped pits in InGaN/GaN/AlN/GaN heterostructure by metal modulation growth technique, Semicond. Sci. Technol. 33 (2018) 035009. https://doi.org/10.1088/1361-6641/aaa7cc
  12. H. Woo, H. Jo, J. Kim, S. Cho, Y. Jo, C.H. Roh, J.H. Lee, Y. Seo, J. Park, H. Kim, C.-K. Hahn, H. Im, Phase separation suppression in InxGa1−xN on a Si substrate using an indium modulation technique, Curr. Appl. Phys. 17 (2017) 1142-1147. https://doi.org/10.1016/j.cap.2017.05.003
  13. S. Srinivasan, R. Liu, F. Bertram, F.A. Ponce, S. Tanaka, H. Omiya, Y. Nakagawa, A comparison of Rutherford Backscattering spectroscopy and X‐ray diffraction to determine the composition of thick InGaN epilayers, Phys. Status Solidi (b) 228 (2001) 41-44. https://doi.org/10.1002/1521-3951(200111)228:1<41::AID-PSSB41>3.0.CO;2-N
  14. T. Kimura, E. Fukumoto, T. Yamaguchi, K. Wang, M. Kaneko, T. Araki, E. Yoon, Y. Nanishi, Investigation of InN mole fraction fluctuation in InGaN films grown by RF-MBE, Phys. Status Solidi (c) 8 (2011) 1499-1502. https://doi.org/10.1002/pssc.201001203
  15. I.-K. Park, M.-K. Kwon, S.-H. Baek, Y.-W. Ok, T.-Y. Seong, S.-J. Park, Y.-S. Kim, Y.-T. Moon, D.-J. Kim, Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots, Appl. Phys. Lett. 87 (2005) 061906. https://doi.org/10.1063/1.2008365
  16. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm, Appl. Phys. Lett. 70 (1997) 981. https://doi.org/10.1063/1.118455
  17. C.A. Tran, R.F. Karlicek Jr., M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M.G. Brown, J. Nering, I. Ferguson, R. Stall, Phase separation in InGaN/GaN multiple quantum wells and its relation to brightness of blue and green LEDs, J. Cryst. Growth 195 (1998) 397-400. https://doi.org/10.1016/S0022-0248(98)00572-7
  18. S. Nakamura, S.F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, CRC Press, 2000.
  19. F. Bertram, S. Srinivasan, R. Liu, L. Geng, F.A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, Y. Nakagawa, Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence, Mater. Sci. Eng. B 93 (2002) 19-23. https://doi.org/10.1016/S0921-5107(02)00009-0
  20. P.R. Edwards, R.W. Martin, K.P. O'Donnell, I.M. Watson, Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers, Phys. Status Solidi (c) 0 (2003) 2474-2477.
  21. J. Bruckbauer, P.R. Edwards, T. Wang, R.W. Martin, High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures, Appl. Phys. Lett. 98 (2011) 141908. https://doi.org/10.1063/1.3575573
  22. K. Hiramatsu, Y. Kawaguchi, M. Shimisu, N. Sawaki, T. Zheleva, R.F. Davis, H. Tsuda, W. taki, N. Kuwano, K. Oki, The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization, MRS Internet J. Nitride Semicond. Res. 2 (1997) 6. https://doi.org/10.1557/S1092578300001320
  23. Y.-H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBaars, "S-shaped" temperature-dependent emission shift and Carrier dynamics in InGaN/GaN multiple quantum wells, Appl. Phys. Lett. 73 (1998) 1370. https://doi.org/10.1063/1.122164
  24. D. Doppalapudi, S.N. Basu, K.F. Ludwig, T.D. Moustakas, Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy, Appl. Phys. Lett. 84 (1998) 1389.
  25. P. Mishra, B. Janjua, T.K. Ng, D.H. Anjum, R.T. Elafandy, A. Prabaswara, C. Shen, A. Salhi, A.Y. Alyamani, M.M. El-Desouki, B.S. Ooi, On the optical and microstrain analysis of graded InGaN/GaN MQWs based on plasma assisted molecular beam epitaxy, Opt. Mater. Express 6 (2016) 2052-2062. https://doi.org/10.1364/OME.6.002052
  26. E.-L. Lai, C.-P. Lin, Y.-H. Lin, T.-H. Hsueh, R.M. Lin, D.-Y. Lyu, Z.-X. Peng, T.-Y. Lin, Origins of efficient green light emission in phase-separated InGaN quantum wells, Nanotechnology 17 (2006) 3734-3739. https://doi.org/10.1088/0957-4484/17/15/020
  27. F.B. Nranjo, S. Fernandez, M.A. Sanchez-Gracia, F. Calle, E. Calleja, A. Trampert, K.H. Ploog, Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy, Mater. Sci. Eng. (b) 93 (2002) 131-134. https://doi.org/10.1016/S0921-5107(02)00032-6
  28. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica 34 (1967) 149. https://doi.org/10.1016/0031-8914(67)90062-6
  29. Y.S. Park, C.M. Park, D.J. Fu, T.W. Kang, J.E. Oh, Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy, Appl. Phys. Lett. 85 (2004) 5718. https://doi.org/10.1063/1.1832739
  30. M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G. Namkoong, W.A. Doolittle, Observation and control of the surface kinetics of InGaN for the elimination of phase separation, J. Appl. Phys. 112 (2012) 014909. https://doi.org/10.1063/1.4733347

Cited by

  1. Solving the problem of gallium contamination problem in InAlN layers in close coupled showerhead reactors vol.12, pp.4, 2018, https://doi.org/10.7567/1882-0786/ab0bbb
  2. Suppression of V-pits formation in InGaN layer by stepped growth with annealing interval vol.28, pp.None, 2018, https://doi.org/10.1016/j.surfin.2021.101691