• Title/Summary/Keyword: Ga 이온빔

Search Result 42, Processing Time 0.026 seconds

Measurements of Lattice Strain in MOCVD-GaN Thin Film Grown on a Sapphire Substrate Treated by Reactive Ion Beam (활성화 이온빔 처리된 Sapphire기판 위에 성장시킨 MOCVD-GaN 박막의 격자변형량 측정)

  • Kim, Hyun-Jung;Kim, Gyeung-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.337-345
    • /
    • 2000
  • Introduction of the buffer layer and the nitridation of a sapphire substrate were one of the most general methods employed for the reduction of lattice defects in GaN thin films Brown on sapphire by MOCVD. In an effort to improve the initial nucleation and growth condition of the GaN, reactive ion beam (RIB) of nitrogen treatment of the sapphire surface has been attempted. The 10 nm thick, amorphous $AlO_xN_y$ layer was formed by RIB and was partially crystallized alter the main growth of GaN at high temperature, leaving isolated amorphous regions at the interface. The beneficial effect of amorphous layer at interface in relieving the thermal stress between substrate and GaN film was examined by measuring the lattice strain value of the GaN film grown with and without the RIB treatment. Higher order Laue zone pattern (HOLZ) of $[\bar{2}201]$ zone axis was compared with simulated patterns and lattice strain was estimated It was confirmed that the great reduction of thermal strain was achieved by RIB process and the amount of thermal stress was 6 times higher in the GaN film grown by conventional method without the RIB treatment.

  • PDF

Damage of Minerals in the Preparation of Thin Slice Using Focused Ion Beam for Transmission Electron Microscopy (투과전자현미경분석용 박편 제작 시 집속이온빔에 의한 광물 손상)

  • Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.293-297
    • /
    • 2015
  • Focused ion beam (FIB) technique is widely used in the precise preparation of thin slices for the transmission electron microscopic (TEM) observation of target area of the minerals and geological materials. However, structural damages and artifacts by the Ga ion beam as well as electron beam damage are major difficulties in the TEM analyses. TEM analyses of the mineral samples showed the amorphization of quartz and feldspar, curtain effect, and Ga contamination, particularly near the grain edges and relatively thin regions. Although the ion beam damage could be much reduced by the improved procedures including the adjustment of the acceleration voltage and current, the ion beam damage and contamination are likely inevitable, thus requiring careful interpretation of the micro-structural and micro-chemical features observed by TEM analyses.

The study of beam characteristics for Ga LMIS and In LMIS (갈륨액체금속 이온원과 인듐액체금속 이온원의 빔 특성에 대한 연구)

  • Hyun Jeong Woo;Yim Youn Chan;Jung Kang Won;Jung Won Hee;Park Cheol Woo;Lee Jong Hang;Kang Seung Oun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.360-363
    • /
    • 2005
  • 본 연구에서는 인듐 액체금속이온원을 제작하여 빔 특성에 대해 연구를 하였으며, 기존의 연구를 하였던 갈륨 액체금속 이온원의 빔특성과 비교분석 하였다. 빔특성 분석을 위해 빔 안정도, 전류-전압특성곡선, 에너지 퍼짐을 측정하였다. 액체금속이온원에 사용되는 액체금속 저장소 및 바늘전극(tip)은 $500{\mu}m$의 직경을 갖는 텅스텐을 사용하였으며, 국내에서 제작된 제품을 사용하였다. 액체금속 저장소의 구조는 이전에 구상하여 연구가 이루어진 6개의 pre-etching된 텅스텐와이어(wire)가 묶여진 형태를 사용하였다.

  • PDF

The Modification of Magnetic Properties of Co73Pt27-TiO2 Perpendicular Magnetic Recording Media with Ga+ Ion Irradiation (Ga+ 이온 조사를 통한 Co73Pt27-TiO2 수직자기 기록매체의 자기적 특성 변화)

  • Kim, Sung-Dong;Park, Jin-Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.221-225
    • /
    • 2007
  • The effects of $Ga^+$ ion irradiation on the magnetic properties of the $Co_{73}Pt_{27}-TiO_2$ perpendicular magnetic recording media were investigated. As $Ga^+$ ion dose increased from $1\times10^{15}ions/cm^2\;to\;30\times10^{15}ions/cm^2$, the perpendicular magnetic anisotropy was degraded and no longer observed above $20\times10^{15}ions/cm^2$ dose. The deterioration of the perpendicular magnetic anisotropy and ferromagnetic properties can be attributed to the concentration profile change due to Ga+ ion implantation. The magnetic islands of $70\times70nm^2\;and\;100\times100nm^2$ size were successfully fabricated with $Ga^+$ ion irradiation.

Effect of $Ga^+$ Ion Beam Irradiation On the Wet Etching Characteristic of Self-Assembled Monolayer ($Ga^+$ 이온 빔 조사량에 따른 자기 조립 단분자막의 습식에칭 특성)

  • Noh Dong-Sun;Kim Dea-Eun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.326-329
    • /
    • 2005
  • As a flexible method to fabricate sub-micrometer patterns, Focused Ion Beam (FIB) instrument and Self-Assembled Monolayer (SAM) resist are introduced in this work. FIB instrument is known to be a very precise processing machine that is able to fabricate micro-scale structures or patterns, and SAM is known as a good etch resistance resist material. If SAM is applied as a resist in FIB processing fur fabricating nano-scale patterns, there will be much benefit. For instance, low energy ion beam is only needed for machining SAM material selectively, since ultra thin SAM is very sensitive to $Ga^+$ ion beam irradiation. Also, minimized beam spot radius (sub-tens nanometer) can be applied to FIB processing. With the ultimate goal of optimizing nano-scale pattern fabrication process, interaction between SAM coated specimen and $Ga^+$ ion dose during FIB processing was observed. From the experimental results, adequate ion dose for machining SAM material was identified.

  • PDF

Optimal Determination of the Fabrication Parameters in Focused Ion Beam for Milling Gold Nano Hole Array (금 나노홀 어레이 제작을 위한 집속 이온빔의 공정 최적화)

  • Cho, Eun Byurl;Kwon, Hee Min;Lee, Hee Sun;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.262-269
    • /
    • 2013
  • Though focused ion beam (FIB) is one of the candidates to fabricate the nanoscale patterns, precision milling of nanoscale structures is not straightforward. Thus this poses challenges for novice FIB users. Optimal determination in FIB parameters is a crucial step to fabricate a desired nanoscale pattern. There are two main FIB parameters to consider, beam current (beam size) and dose (beam duration) for optimizing the milling condition. After fixing the dose, the proper beam current can be chosen considering both total milling time and resolution of the pattern. Then, using the chosen beam current, the metal nano hole structure can be perforated to the required depth by varying the dose. In this experiment, we found the adequate condition of $0.1nC/{\mu}m^2$ dose at 1 pA Ga ion beam current for 100 nm thickness perforation. With this condition, we perforated the periodic square array of elliptical nano holes.

이온 빔 스퍼터링 방법으로 제작한 Mo 박막의 특성조사

  • Jo, Sang-Hyeon;Kim, Hyo-Jin;Yun, Yeong-Mok;Lee, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.304-304
    • /
    • 2012
  • CIGS(CuInGaSe2) 태양전지의 후면전극(Back contact)으로 널리 사용되는 Mo 박막은 낮은 면저항, 높은 반사율, 광흡수층 Na-path 제공 등의 조건이 요구된다. 일반적으로 Mo 박막 제작은 DC 마그네트론 스퍼터링 방법이 가장 널리 사용되며, 제작조건에 따라 태양전지 효율에 강한 영향을 미치는 것으로 보고되고 있다. 본 연구에서는 DC 마그네트론 스퍼터링 시 기판에 이온빔(Ion-beam)을 동시 조사하는 이온 빔 스퍼터링 증착(Ion-beam sputter deposition)법으로 Mo 박막을 제작하였다. 제작된 박막의 전기적 및 광학적 특성은 4-point probe, UV-Vis-NIR spectrometer로 각각 조사하였으며 Na-path 제어를 위한 구조적 특성은 XRD, FE-SEM으로 분석하였다. 분석결과에 따르면 기존 DC 마그네트론 스퍼터링 방법보다 상대적으로 더 치밀한 구조와 높은 반사율을 가지는 박막이 제작됨을 알 수 있었다. Mo 박막의 최적조건은 DC power 300 W, Ion-gun power 50 W, Ar flow rate 20 sccm 였다.

  • PDF

Effects of Postannealing on GaN Grown by MOCVD on Reactive ion Beam Pretreated Sapphire Substrate (활성화 이온빔 처리된 사파이어 기판상 MOCVD로 성장시킨 GaN의 열처리 효과)

  • Lee, Sang-Jin;Byeon, Dong-Jin;Hong, Chang-Hui;Kim, Geung-Ho
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.191-196
    • /
    • 2001
  • GaN is a key material for blue and ultraviolet optoelectronics. Postannealing process was employed to investigate the structural change and the effect on electrical property of the GaN thin film grown on reactive ion beam(RIB) treated sapphire (0001) substrate. Full width half maximum (FWHM) of double crystal x-ray diffraction (DCXRD) spectra and Hall mobility of the specimen were significantly changed depending on the postannealing time at $1000^{\circ}C$ in N2 atmosphere. FWHM of DCXRD reduced upto about 50arc-sec and the mobility increased about $80\textrm{cm}^2$/V.sec. The postannealed specimen with the best mobility was compared with sample without annealing by TEM. The former sample showed a decrease in the lattice strain and reduction of dislocation density by about 56~59%. This implies that there is a strong correlation between crystalline quality and the electrical property of the film. The Present results clearly show that the combination of RIB pretreatment and proper post annealing conditions results in the improved properties of GaN films grown by MOCVD.

  • PDF