• Title/Summary/Keyword: GRP78

Search Result 67, Processing Time 0.03 seconds

Effects of Parafibromin Expression on the Phenotypes and Relevant Mechanisms in the DLD-1 Colon Carcinoma Cell Line

  • Zhao, Shuang;Sun, Hong-Zhi;Zhu, Shi-Tu;Lu, Hang;Niu, Zhe-Feng;Guo, Wen-Feng;Takano, Yasuo;Zheng, Hua-Chuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4249-4254
    • /
    • 2013
  • Background: Parafibromin is a protein encoded by the HRPT2 (hyperparathyroidism 2) oncosuppressor gene and its down-regulated expression is involved in pathogenesis of parathyroid, breast, gastric and colorectal carcinomas. This study aimed to clarify the effects of parafibromin expression on the phenotypes and relevant mechanisms of DLD-1 colon carcinoma cells. Methods: DLD-1 cells transfected with a parafibromin-expressing plasmid were subjected to examination of phenotype, including proliferation, differentiation, apoptosis, migration and invasion. Phenotype-related proteins were measured by Western blot. Parafibromin and ki-67 expression was detected by immunohistochemistry on tissue microarrays. Results: The transfectants showed higher proliferation by CCK-8, better differentiation by electron microscopy and ALP activity and more apoptotic resistance to cisplatin by DNA fragmentation than controls. There was no difference in early apoptosis by annexin V, capase-3 activity, migration and invasion between DLD-1 cells and their transfectants. Ectopic parafibromin expression resulted in down-regulated expression of smad4, MEKK, GRP94, GRP78, $GSK3{\beta}$-ser9, and Caspase-9. However, no difference was detectable in caspase-12 and -8 expression. A positive relationship was noted between parafibromin and ki-67 expression in colorectal carcinoma. Conclusions: Parafibromin overexpression could promote cell proliferation, apoptotic resistance, and differentiation of DLD-1 cells.

Cyclosporine A and bromocriptine attenuate cell death mediated by intracellular calcium mobilization

  • Kim, In-Ki;Park, So-Jung;Park, Jhang-Ho;Lee, Seung-Ho;Hong, Sung-Eun;Reed, John C.
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.482-487
    • /
    • 2012
  • To identify the novel inhibitors of endoplasmic reticulum stress-induced cell death, we performed a high throughput assay with a chemical library containing a total of 3,280 bioactive small molecules. Cyclosporine A and bromocriptine were identified as potent inhibitors of thapsigargiin-induced cell death (cut-off at $4{\sigma}$ standard score). However, U74389G, the potent inhibitor of lipid peroxidation had lower activity in inhibiting cell death. The inhibition effect of cyclosporine A and bromocriptine was specific for only thapsigargin-induced cell death. The mechanism of inhibition by these compounds was identified as modification of the expression of glucose regulated protein-78 (GRP-78/Bip) and inhibition of phosphorylation of p38 mitogen activated protein kinase (MAPK). However, these compounds did not inhibit the same events triggered by tunicamycin, which was in agreement with the cell survival data. We suggest that the induction of protective unfolded protein response by these compounds confers resistance to cell death. In summary, we identified compounds that may provide insights on cell death mechanisms stimulated by ER stress.

Prostate Apoptosis Response-4 (Par-4) as a Cancer Therapeutic Target (암 치료 표적으로써 prostate apoptosis response-4 (Par-4))

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.947-952
    • /
    • 2015
  • Prostate apoptosis response-4 (Par-4) was originally identified in androgen-independent prostate cancer cells undergoing apoptosis. Par-4 is ubiquitously expressed in normal cells and tissues, but it is downregulated in several types of cancers. Par-4 is a 38 kDa tumor suppressor protein encoded by the PARW gene. Par-4 promotes apoptosis in a variety of cancerous cells, but not in normal cells. In this review, we focused on the structure, expression and function of Par-4 in apoptotic signaling pathway. Functional domains of Par-4 include two nuclear localization sequences (NLS), a leucine zipper (LZ) domain, a nuclear export sequence (NES) and selective for apoptosis in cancer cell (SAC) domain. Many studies have underlined the importance of Par-4 in preventing cancer development. The activity of Par-4 is differently regulated by localization of intracellular and extracellular Par-4. Intracellular Par-4 inhibits Akt- and NF-κB-mediated cell survival pathways and downregulates Bcl-2 expression. Extracellular Par-4 activates the extrinsic apoptotic pathway by binding to cell surface receptor GRP78, a stress response protein that is in the endoplasmic reticulum (ER). Endogenous Par-4 sensitizes cancer cells to various apoptotic stimuli, while exogenous Par-4 enhances SAC domain-dependent apoptosis in cancer cells, but not normal cells. Therefore, Par-4 is an attractive target for cancer therapy.

Neuroprotective Effects of Parkin and Bcl-2 against Dieldrin-induced Endoplasmic Reticulum Stress (디엘드린 유도성 소포체 스트레스에서의 parkin과 Bcl-2의 신경보호 효과)

  • Seo, Jeong-Yeon;Kim, Jae-Sung;Kim, Do Kyung;Chun, Hong Sung
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.771-777
    • /
    • 2022
  • Dopaminergic (DA) cell death in Parkinson's disease (PD) has been attributed to multiple, distinct genetic and environmental factors. In rare familial PD loss of parkin function mutations play a key role in nigral DA neuron-specific pathogenesis primarily via endoplasmic reticulum (ER) stress. In more prevalent sporadic PD, environmental exposure to pesticides has a significant epidemiological role. However, it is largely unknown how environmental exposure to xenobiotics is etiologically linked with the known etiology in familial PD. In the present study biochemical evidence for a common pathogenic mechanism between sporadic and familial PD has been identified employing the recently characterized mesencephalic DA cell line, N27-A. Dieldrin, an organochlorine pesticide epidemiologically implicated in sporadic PD, induced the markers of ER stress response such as a chaperone BiP/Grp78, heme oxygenase-1 and especially, parkin. Accordingly, dieldrin activated the ER resident Caspase-12, a mediator of ER stress-specific apoptosis, during cell death of N27-A cells. Of great interest the dieldrin-induced DA neuronal cell death was synergistically rescued by the overexpression of ER resident neuroprotective proteins, parkin and Bcl-2. The present findings implicate that accumulation of ER stress could be one of common pathogenic mechanisms in idiopathic and familial PD, and some ER proteins, such as parkin and Bcl-2 may effectively attenuate ER stress-mediated N27-A DA cell death.

The protective effects of ethanolic extract of Clematis terniflora against corticosterone-induced neuronal damage via the AKT and ERK1/2 pathway

  • Noh, Yoohun;Cheon, Seungui;Kim, In Hye;Kim, Inyong;Lee, Seung-Ah;Kim, Do-Hee;Jeong, Yoonhwa
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.400-405
    • /
    • 2018
  • Chronic stress induces neuronal cell death, which can cause nervous system disorders including Parkinson's disease and Alzheimer's disease. In this study, we evaluated the neuroprotective effects of Clematis terniflora extract (CTE) against corticosterone-induced apoptosis in rat pheochromocytoma (PC12) cells, and also investigated the underlying molecular mechanisms. At concentrations of 300 and $500{\mu}g/ml$, CTE significantly decreased apoptotic cell death and mitochondrial damage induced by $200{\mu}M$ corticosterone. CTE decreased the expression levels of endoplasmic reticulum (ER) stress proteins GRP78, GADD153, and mitochondrial damage-related protein BAD, suggesting that it downregulates ER stress evoked by corticosterone. Furthermore, our results suggested that these protective effects were mediated by the upregulation of p-AKT and p-ERK1/2, which are involved in cell survival signaling. Collectively, our results indicate that CTE can lessen neural damage caused by chronic stress.

ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells

  • Arduino, Daniela M.;Esteves, A. Raquel;Domingues, A. Filipa;Pereira, Claudia M.F.;Cardoso, Sandra M.;Oliveira, Catarina R.
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.719-724
    • /
    • 2009
  • Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

Proteomics Analysis of Immunoprecipitated Proteins Associated with the Oncogenic Kinase Cot

  • Wu, Binhui;Wilmouth, Rupert C.
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • Cancer Osaka thyroid, also known as Tpl-2 (Cot) is a member of the MAP3K kinase family and plays a key role in the regulation of the immune response to pro-inflammatory stimuli such as lipopolysaccharide (LPS) and tumour necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). A series of Cot constructs with an N-terminal 6xHis tag were transiently expressed in HEK293 cells: $Cot_{130-399}$ (kinase domain), $Cot_{1-388}$ (N-terminal and kinase do-mains), $Cot_{1-413}$, $Cot_{1-438}$ (containing a putative PEST sequence), $Cot_{1-457}$ (containing both PEST and degron sequences) and $Cot_{1-467}$ (full-length protein). These Cot proteins were pulled down using an anti-6xHis antibody and separated by 2D electrophoresis. The gels were silver-stained and 21 proteins were detected that did not appear, or had substantially reduced intensity, in the control sample. Three of these were identified by MS and MS/MS analysis as Hsp90, Hsp70 and Grp78. Hsp90 appeared to bind to the kinase domain of Cot and this interaction was further investigated using co-immuno-precipitation with both overexpressed Cot in HEK293 cells and endogenous Cot in Hela cells.

Apoptotic Effects of Curcumin on the Epstein-Barr Virus-Transformed Human B Lymphoma Cells Activated by PWM (Curcumin이 PWM에 의해 활성화된 Epstein-Barr 바이러스 변형 사람 B 림프종 세포의 사멸에 미치는 효과)

  • Ryu, Sang-Chae;Lee, Jang-Suk;Chong, Myong-Soo;Lee, Ki-Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.287-292
    • /
    • 2012
  • The results of this study intended to clarify the apoptotic effects of curcumin on Epstein-Barr virus transformed human B lymphoma (EBV-B) cells are summarized as follows: It was found that curcumin induced endoplasmic reticulum(ER) stress as well as apoptotic cell death in EBV-B cells, although the magnitude of action was insignificant. When EBV-B cells activated by pokeweed mitogen (PWM) were treated with the same concentrations of curcumin, it was found that higher ER stress (GRP78, P-PERK, XBP-1, ATF6, and CHOP expressed) increased unfold protein response (UPR) and thus, apoptosis attributed to ER stress, compared to non-activated EBV-B cells In conclusion, it is expected that curcumin will play an important role for leukemia treatment.

Houttuynia cordata Thunb Fraction Induces Human Leukemic Molt-4 Cell Apoptosis through the Endoplasmic Reticulum Stress Pathway

  • Prommaban, Adchara;Kodchakorn, Kanchanok;Kongtawelert, Prachya;Banjerdpongchai, Ratana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1977-1981
    • /
    • 2012
  • Houttuynia cordata Thunb (HCT) is a native herb found in Southeast Asia which features various pharmacological activities against allergy, inflammation, viral and bacterial infection, and cancer. The aims of this study were to determine the cytotoxic effect of 6 fractions obtained from silica gel column chromatography of alcoholic HCT extract on human leukemic Molt-4 cells and demonstrate mechanisms of cell death. Six HCT fractions were cytotoxic to human lymphoblastic leukemic Molt-4 cells in a dose-dependent manner by MTT assay, fraction 4 exerting the greatest effects. Treatment with $IC_{50}$ of HCT fraction 4 significantly induced Molt-4 apoptosis detected by annexinV-FITC/propidium iodide for externalization of phosphatidylserine to the outer layer of cell membrane. The mitochondrial transmembrane potential was reduced in HCT fraction 4-treated Molt-4 cells. Moreover, decreased expression of Bcl-xl and increased levels of Smac/Diablo, Bax and GRP78 proteins were noted on immunoblotting. In conclusion, HCT fraction 4 induces Molt-4 apoptosis cell through an endoplasmic reticulum stress pathway.

4-phenylbutyric Acid Regulates Collagen Synthesis and Secretion Induced by High Concentrations of Glucose in Human Gingival Fibroblasts

  • Lee, Geum-Hwa;Oh, Hyo-Won;Lim, Hyun-Dae;Lee, Wan;Chae, Han-Jung;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.345-351
    • /
    • 2011
  • High glucose leads to physio/pathological alterations in diabetes patients. We investigated collagen production in human gingival cells that were cultured in high concentrations of glucose. Collagen synthesis and secretion were increased when the cells were exposed to high concentrations of glucose. We examined endoplasmic reticulum (ER) stress response because glucose metabolism is related to ER functional status. An ER stress response including the expression of glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), inositol requiring enzyme alpha (IRE-$1{\alpha}$) and phosphoreukaryotic initiation factor alpha (p-eIF-$2{\alpha}$) was activated in the presence of high glucose. Activating transcription factor 4 (ATF-4), a downstream protein of p-eIF-$2{\alpha}$ as well as a transcription factor for collagen, was also phosphorylated and translocalized into the nucleus. The chemical chaperone 4-PBA inhibited the ER stress response and ATF-4 phosphorylation as well as nuclear translocation. Our results suggest that high concentrations of glucose-induced collagen are linked to ER stress and the associated phosphorylation and nuclear translocation of ATF-4.