• Title/Summary/Keyword: GREENSPACE AREA

Search Result 30, Processing Time 0.025 seconds

Mitigation of Carbon Dioxide and Heavy Metals by Urban Greenspace (도시녹지의 이산화탄소 및 중금속 저감)

  • Park, Joo-Young;Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.137-154
    • /
    • 2010
  • These objectives of this study were to compute heavy metal and accumulation carbon dioxide fixing quantity from urban green space(street trees and urban parks) in Cheong-ju city and Chungju-city and thus to estimate the effect of urban green space for improving the urban environment. The results are summarized below. 1. Results of the total accumulation of the carbon dioxide fixing quantity of street trees, Cheong-ju city and Chungju-city street tree was 1, 230,000kg-C, 1,270,000 kg-C, respectively. Total accumulation carbon dioxide fixing quantity of Balssan urban park had a 25,000kg-C in Cheong-ju city, Degami sports park had a 6,400kg-C in Chungju-city. 2. Results of heavy metal for street trees, fell in the order Zn > Cu > Cr > Ni >, the highest accumulated heavy metal was Zn, and the lowest was Ni. Total heavy metal concentration according to land-use area, was observed in order, for residental areas(157.26 mg/kg) > industrial areas(141.71 mg/kg) > commercial areas(118.55 mg/kg) > and greenspace areas(61.95 mg/kg) in Cheong-ju city. 3. Total heavy metal concentration for street trees fell in the order of commercial areas(84.48 mg/kg) > residental areas(83.70 mg/kg) > and greenspace(48.23 mg/kg) according to land-use area in Chungju-city. Comparatively, Cheong-ju city had more total heavy metal concentration than Chungju-city. 4. Heavy metal for soil that planted street trees was observed in order of Zn > Cu > Pb( > Ni > Cr > As > Cd), and Zn was highest, and Cd was lowest. Total heavy metal concentration for soil fell in the order commercial area(91.82mg/kg) > industrial area(85.96mg/kg) > residental area(67.55mg/kg) > greenspace(43.13mg/kg) according to land-use area in Cheong-ju city. 5. Heavy metal for soil that planted street trees was observed in order of Zn > Pb > Cu( > Ni > Cr > As > Cd, and Zn was highest. Total heavy metal concentration for soil fell in the order commercial area(87.66mg/kg) > greenspace(72.73mg/kg) $${\geq_-}$$ residental area(70.10mg/kg) in Chungju-city.

  • PDF

Landscape Fragmentation of Circular Greenspace in Cheongju and Requirements for a Sustainable Development (청주시 환상녹지의 경관 파편화 실태와 지속가능한 녹지관리 방안 모색)

  • Kim, Jai-Han
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.1
    • /
    • pp.79-97
    • /
    • 2012
  • This study examines on the impact of biodiversity in circular greenspace of Cheongju city since 2002 greenbelt release. Research has carried out to investigate the biotope pattern change with landscape fragmentation. Major landscape fragmentation has occurred with development of residential sector and build-up of major highways. Settlement has been expanded to the entire area connected to urban district excluding the eastern forest. North-south district shows high road density, where inter-regional roads meet in the cross-section. It is found that landscape fragmentation impact on species richness as well as population size of the species varies depending on the animal species. The birds show high species richness in N2, N3, N4, S2(north-south zone) even with high fragmentation rate. This can be explained that birds can access to aquatic environment where they can find abundant food resources. The amphibians and the reptiles show almost no zonal variation in species richness than the birds. The more a zone fragmented in small patches, the species richness of the amphibians and the reptiles also tends to be declined. Information accumulation on biodiversity for integrating landscape planning in urban planning, various level of community participation in decision making process, and cross border cooperation with neighbouring Cheongwon-gun will be required for sustainable greenspace management of Cheongju City.

  • PDF

The Biotope Evaluation of City Center Area for the Nature Experience and Recreation (자연체험 및 휴양기능을 중심으로 한 도시밀집지역 비오톱 평가)

  • 나정화;도후조
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.42-53
    • /
    • 2003
  • The purpose of this study is to evaluate the biotope structure of the city center area of Jung-gu for nature experiences and recreation purposes. Jung-gu is the most extremely and rapidly urbanized area of Daegu. This study was conducted under the assumption that the biotope structure of a city center area would be different from the urban area. The results of this study are as follows: 1) There are 11 biotope type groups as designated as commercial and work-area biotope type group, and 41 detailed biotope types designated as commercial areas with a lack of greenspace biotope type. 2) The commercial and work area biotope type group has the largest area with 34% of the total area, and the square biotope type group has the smallest area with 34% of total area. 3) The result of primary biotope evaluation is that there are 12 biotope types that have greater than third grade, apart from the biotope type of park that includes natural vegetation. The first grade of biotope type has not appeared in this area, however, the fifth grade of biotope type has 20 biotope types with the biotope type of construction work area (JA). 4) The results of the secondary biotope evaluation are 1 biotope for la, 9 biotopes for 2a, 9 biotopes for 2b, 14 biotopes for 2c and no biotope for 2a. This study suggests that a detailed investigation and improvement plan for high-value biotope areas in the city center area must be continued.

A study of sight-psychological effects by a color area of greenspace (녹지의 색면적에 따른 시각심리적 효과에 관한 연구)

  • 김은일
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.1
    • /
    • pp.36-43
    • /
    • 1998
  • We compared the electroencephalogram, blood pressure, and sensory evaluation inspectioni several color of Petunia hybrida to analyze the physiopsychological effects of a plant. Considering occipital is related to visuosensory field, green color is thought as mild visual stimulator unlike to pink color. The results are coincident with the well-known facts that green color is less stimulating color. It is also accorded with the sensory evaluation results that green color showed te feeling of blue and stable. In case of green color is showed the feeling of blue and stable. In case of green color the generatioin of alpha waves increased according to the increase color area. Therefore it is thought that green color helps decrease of visual stimulation and increase in visual stability. However it is thought that pink has less physiopsychological effects on human beings depending on area sizes than green has.

  • PDF

Effect of Thermal Environment by Green Roof and Land Cover Change in Detached Housing Area (옥상녹화 및 토양피복 변화가 단독주택지 외부 열환경에 미치는 영향 분석)

  • Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.27-47
    • /
    • 2011
  • Used as foundation resources for environment improvement and preservation of single-housing residential area by practicing classification of biotope with the concept of ecological area rate applied and performing urban thermal environment prediction simulation. Biotope is classified as seven types according to classification of biotope which is carried out with the concept of ecological area rate applied. The classification is listed below in descending order: building biotope(48.16%), impervious pavement biotope(39.75%), greenspace biotope(6.23%), crack permeable pavement biotope(3.26%), whole surface permeable pavement biotope(2.51%), parts permeable pavement biotope(0.04%). As a result of analysing prediction of variation and characteristics of thermal environment of single-housing residential area, land surface temperature per types of biotope are evaluated as listed below in descending temperature order: impervious pavement biotope > building biotope > greenspace biotope > permeable pavement biotope. In case 2 where vegetated roof hypothetically covers 100% of the roof area, temperature is predicted to be $33.58^{\circ}C$ Max, $23.85^{\circ}C$ Min, and $27.74^{\circ}C$ Avg. which is Approximately $5.19^{\circ}C$ lower than a non-vegetated roof. Average outdoor temperature for case 2 is studied to be $0.18^{\circ}C$ lower than case 1.

  • PDF

Effects and Improvement of Carbon Reduction by Greenspace Establishment in Riparian Zones (수변구역 조성녹지의 탄소저감 효과 및 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.16-24
    • /
    • 2015
  • This study quantified storage and annual uptake of carbon for riparian greenspaces established in watersheds of four major rivers in South Korea and explored desirable strategies to improve carbon reduction effects of riparian greenspaces. Greenspace structure and planting technique in the 40 study sites sampled were represented by single-layered planting of small trees in low density, with stem diameter at breast height of $6.9{\pm}0.2cm$ and planting density of $10.4{\pm}0.8trees/100m^2$ on average. Storage and annual uptake of carbon per unit area by planted trees averaged $8.2{\pm}0.5t/ha$ and $1.7{\pm}0.1t/ha/yr$, respectively, increasing as planting density got higher. Mean organic matter and carbon storage in soils were $1.4{\pm}0.1%$ and $26.4{\pm}1.5t/ha$, respectively. Planted trees and soils per ha stored the amount of carbon emitted from gasoline consumption of about 61 kL, and the trees per ha annually offset carbon emissions from gasoline use of about 3 kL. These carbon reduction effects are associated with tree growth over five years to fewer than 10 years after planting, and predicted to become much greater as the planted trees grow. This study simulated changes in annual carbon uptake by tree growth over future 30 years for typical planting models selected as different from the planting technique in the study sites. The simulation revealed that cumulative annual carbon uptake for a multilayered and grouped ecological planting model with both larger tree size and higher planting density was approximately 1.9 times greater 10 years after planting and 1.5 times greater 30 years after than that in the study sites. Strategies to improve carbon reduction effects of riparian greenspaces suggest multilayered and grouped planting mixed with relatively large trees, middle/high density planting of native species mixed with fast-growing trees, and securing the soil environment favorable for normal growth of planting tree species. The research findings are expected to be useful as practical guidelines to improve the role of a carbon uptake source, in addition to water quality conservation and wildlife inhabitation, in implementing riparian greenspace projects under the beginning stage.

Comparing Carbon Reduction Estimates for Tree Species from Different Quantitative Models

  • Hyun-Kil Jo;Hye-Mi Park
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.119-127
    • /
    • 2023
  • In this study, quantitative models were applied to case parks to estimate the carbon reduction by trees, which was compared and analyzed at the tree and park levels. At the tree level, quantitative models of carbon storage and uptake differed by up to 7.9 times, even for the same species and size. At the park level, the carbon reduction from quantitative models varied by up to 3.7 times for the same park. In other words, carbon reduction by quantitative models exhibited considerable variation at the tree and park levels. These differences are likely due to the use of different growth environment coefficients and annual diameter at breast height growth rates and the overestimation of carbon reduction due to the substitution of the same genus and group model for each tree species. Extending the annual carbon uptake per unit area of the case park to the total park area of Chuncheon a carbon uptake ranging from a minimum of 370.4 t/yr and a maximum of 929.3 t/yr, and the difference can reach up to 558.9 t/yr. This is equivalent to the carbon emissions from the annual household electricity consumption of approximately 2,430 people. These results suggest that the indiscriminate application of quantitative models to estimate carbon reduction in urban trees can lead to significant errors and deviations in estimating carbon storage and uptake in urban greenspaces. The findings of this study can serve as a basis for estimating carbon reduction in urban greening research, projects, and policies.

A Study on the Creating and Utilizing the Green Space in Tokyo -focusing on city parks- (동경의 녹지공간 조성과 그 운용에 관한 연구 -도시공원을 중심으로-)

  • 이현욱
    • Journal of the Korean Geographical Society
    • /
    • v.34 no.3
    • /
    • pp.247-264
    • /
    • 1999
  • In this study, I investigate how city parks have been created, and what are some characteristics of the location and function of 69 city parks in Tokyo. The city parks in Tokyo have been made in three patterns. The first is planned parks which have been created as a urban facilities considering the scales and types. The second is memorial parks which have been made to memorialize the national monumental event or to preserve natural and cultural resources. The third is public property parks which have been made by occurrence of public vacant land which is resulted from the grant of Royal Garden, restoration of public rented ground, producton of reclaimed land, utilization of dry river bed. The city parks can be classified in five patterns according to distance from CBD and park area. The first is central parks which have historical characteristics strongly. The second is planned parks that are specialized functionally. The third is large scale urban edge parks which are located in the edge of 23-Gu(district) in Tokyo. The fourth is hill parks which have natural characteristics strongly. The fifth is waterside parks that are located along a lake, a pond, a river, or artificial waterside facilities. From this study I have found out that a great effort has been made to activate the utilization of parks for residents in Tokyo, through mnagement goals and ways of parks, composition and chatacteristics of park facility resources, various Events, residents participation in undertaking of parks.

  • PDF

The Ecological Management and Characteristics of Bird Communities at the World Cup Park in Seoul (서울시 월드컵공원 야생조류 군집 특성 및 생태적 관리방안)

  • Han Bong-Ho;Kim Jeong-Ho;Son Byong-Dof;Lee Kyong-Jae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.5 s.112
    • /
    • pp.43-56
    • /
    • 2005
  • This study was conducted to examine the inhabitation of wild birds at the World Cup Park and to offer the Park ecological management data. Land use md actual vegetation were examined to analyze the inhabitation of wild birds. Characteristics of bird communities were analyzed by dominance, density, diversity index and guild concept. You compare inhabitation before and after the Park was built. We classified the land use and actual vegetation into twenty-six types. Robinia pseudoacacia dominated the study area. Pyeonghwa Park and Nanji-cheon Park were simple-layer structures composed of alien woody species. The observed birds after the World Cup Park included 33 families 77 species, and 9,751 individuals. Among Wild Life types, the shrub and bush type was dominant. There were 26 species of resident birds, 20 species of summer visitors, 18 species of winter visitors, and 12 species of passage migrants. The following numbers of species and individuals were observed: in Hanul park, 38 species, 3,151 individuals; in Noul park, 45 species, 2,061 individuals; in Nanji-cheon park, 42 species, 2,742 individuals; in Pyeonghwa park, 29 species, 875 individuals; and in Maebongsan(Mt.) area, 35 species, 922 individuals. Species diversities for each area were as follows: Noul park, 2.613; Hanul park, 2,301; Nanji-cheon, 2.228; and Pyeonghwa park, 2,019; and each season: summer, 2.652; spring, 2.650: winter, 2.561; and autumn 2.176. The diversity of species increased from 1.135 in 1994 to 2.324 in 2001. We recommended that the park be differented into different ecological areas in order to encourage the appearance of wild birds at the World Cup Park. The management area was divided into three districts(conservation area, preservation and restoration area, use area). The conservation area was established to the west of a waste landfill and in the downstream area of NanJi-cheon, the preservation and restoration area was established in the midstream area of Nanji-cheon, and the use area was established in the buffer zone of Pyeonghwa Park and the Nanji pond greenspace.

Impacts of Three-dimensional Land Cover on Urban Air Temperatures (도시기온에 작용하는 입체적 토지피복의 영향)

  • Jo, Hyun-Kil;Ahn, Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The purpose of this study is to analyze the impacts of three-dimensional land cover on changing urban air temperatures and to explore some strategies of urban landscaping towards mitigation of heat build-up. This study located study spaces within a diameter of 300m around 24 Automatic Weather Stations(AWS) in Seoul, and collected data of diverse variables which could affect summer energy budgets and air temperatures. The study also selected reflecting study objectives 6 smaller-scale spaces with a diameter of 30m in Chuncheon, and measured summer air temperatures and three-dimensional land cover to compare their relationships with results from Seoul's AWS. Linear regression models derived from data of Seoul's AWS revealed that vegetation volume, greenspace area, building volume, building area, population density, and pavement area contributed to a statistically significant change in summer air temperatures. Of these variables, vegetation and building volume indicated the highest accountability for total variability of changes in the air temperatures. Multiple regression models derived from combinations of the significant variables also showed that both vegetation and building volume generated a model with the best fitness. Based on this multiple regression model, a 10% increase of vegetation volume decreased the air temperatures by approximately 0.14%, while a 10% increase of building volume raised them by 0.26%. Relationships between Chuncheon's summer air temperatures and land cover distribution for the smaller-scale spaces also disclosed that the air temperatures were negatively correlated to vegetation volume and greenspace area, while they were positively correlated to hardscape area. Similarly to the case of Seoul's AWS, the air temperatures for the smaller-scale spaces decreased by 0.32% ($0.08^{\circ}C$) as vegetation volume increased by 10%, based on the most appropriate linear model. Thus, urban landscaping for the reduction of summer air temperatures requires strategies to improve vegetation volume and simultaneously to decrease building volume. For Seoul's AWS, the impact of building volume on changing the air temperatures was about 2 times greater than that of vegetation volume. Wall and rooftop greening for shading and evapotranspiration is suggested to control atmospheric heating by three-dimensional building surfaces, enlarging vegetation volume through multilayered plantings on soil surfaces.