• Title/Summary/Keyword: GREAT cell

Search Result 797, Processing Time 0.026 seconds

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Hydro-Mechanical Experiment (GREAT 셀을 이용한 삼축압축시험의 수치모사: 수리역학 실험)

  • Dohyun Park;Chan-Hee Park
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2023
  • Unlike the conventional triaxial test cells for cylindrical specimens, which impose uniform lateral confining pressures, the GREAT (Geo-Reservoir Experimental Analogue Technology) cell can exert differential radial stresses using eight independently-controlled pairs of lateral loading elements and thereby generate horizontal stress fields with various magnitudes and orientations. In the preceding companion paper, GREAT cell tests were numerically simulated under different mechanical loading conditions and the validity of the numerical model was investigated by comparing experimental and numerical results for circumferential strain. In the present study, we simulated GREAT cell tests for an artificial sample containing a fracture under both mechanical loading and fluid flow conditions. The numerical simulation was carried out by varying the mechanical properties of the fracture surface, which were unknown. The numerical responses (circumferential strains) of the sample were compared with experimental data and a good match was found between the numerical and experimental results under certain mechanical conditions of the fracture surface. Additionally, the effect of fluid flow conditions on the mechanical behavior of the sample was investigated and discussed.

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Preliminary Study (GREAT 셀을 이용한 삼축압축시험의 수치모사: 예비연구)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • The Geo-Reservoir Experimental Analogue Technology (GREAT) cell was designed to recreate the thermal-hydro-mechanical conditions of deep subsurface in the laboratory. This apparatus can generate a polyaxial stress field using lateral loading elements, which rotate around the longitudinal axis of a sample and is capable of performing a fluid flow test for samples containing fractures. In the present study, numerical simulations were carried out for triaxial compression tests using the GREAT cell and the mechanical behavior of samples under different conditions of lateral loading was investigated. We simulated an actual case, in which triaxial compression tests were conducted for a polymer sample without fractures, and compared the results between the numerical analysis and experiment. The surface strain (circumferential strain) of the sample was analyzed for equal and non-equal horizontal confining pressures. The results of the comparison showed a good consistency. Additionally, for synthetic cases with a fracture, we investigated the effect of the friction and type of fracture surface on the deformation behavior.

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.135-154
    • /
    • 2011
  • The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

New Phenylaminopyrimidine (PAP) Anticancer Lead Compound with High Efficacy: Design, Synthesis, and in vitro Screening

  • El-Deeb, Ibrahim Mustafa;Han, Dong-Keun;Kim, In-Tae;Lee, So-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1848-1858
    • /
    • 2010
  • Phenylaminopyrimidines represent a large group of new selective anticancer agents, the majority of which exert their action through the inhibition of specific kinases. In this study, a new series of N-substituted-2-aminopyrimidines has been designed and synthesized. A selected group of the synthesized derivatives was screened at a single dose concentration of 10 ${\mu}M$ over a panel of 60 cancer cell-lines. Compound 12e has showed great inhibitory and strong lethal effect over almost all of the 60 cell-lines and accordingly was further tested in a 5-dose testing mode to determine its $IC_{50}$ values, where it showed great efficacies with intermediate potencies over the tested cell-lines. The compound was also tested over a panel of 52 kinases to explore its kinase inhibitory profile, and was found to be a selective but moderate inhibitor over FLT3 kinase.

Embryonic Stem Cell and Nuclear Transfer

  • 임정묵
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.06a
    • /
    • pp.19-25
    • /
    • 2002
  • Researches on manipulation pluripotent stem cells derived from blastocysts or promordial germ cells (PGCs) have a great advantages for developing innovative technologies in various fields of life science including medicine, pharmaceutics, and biotechnology. Since the first isolation in the mouse embryos, stem cells or stem cell-like colonies have been continuously established in the mouse of different strains, cattle, pig, rabbit, and human. In the animal species, stem cell biology is important for developing transgenic technology including disease model animal and bioreactor production. ES cell can be isolated from the inner cell mass of blastocysts by either mechanical operation or immunosurgery. So, mass production of blastocyst is a prerequisite factor for successful undertaking ES cell manipulation. In the case of animal ES cell research, various protocol of gamete biotechnology can be applied for improving the efficiency of stem cell research. Somatic cell nuclear transfer technique can be applied to researches on animal ES cells, since it is powerful tool for producing clone embryos containing genes of interest. In this presentation, a brief review was made for explaining how somatic cell nuclear transfer technology could contribute to improving stem cell manipulation technology.

  • PDF

Characterization of Acharan Sulfate Binding Proteins in Blood Plasma

  • Lee, In-Sun;Joo, Eun-Ji;Choi, Hyung-Seok;Hahn, Bum-Soo;Kim, Yeong-Shik
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.211.2-211.2
    • /
    • 2003
  • Glycosaminolycans (GAGs). such as heparin and heparan sulfate, are highly charged molecules and are of great biological importance. Protein-GAGs interactions play prominent roles in cell-cell recognition and cell growth. Acharan sulfate (AS), isolated from the giant African snail Achatina fulica, is a novel member of glycosaminoglycan families. It showed antitumor activity by the inhibition of angiogenesis. (omitted)

  • PDF

A Quantitative Evaluation on Steel Corrosion by Polarization Resistance Method (분극저항법에 의한 철근부식의 정량적 평가)

  • 정우용;손영무;윤영수;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.688-693
    • /
    • 2000
  • Recently great efforts and investment have been made in order to evaluate concrete durability by steel corrosion. But most of study is relatively or qualitatively estimated, therefore it has a great limitation in evaluating a remaining service life of concrete. In this research, steel corrosion rate was measured quantitatively by polarization resistance method and multi-regressed considering chloride, carbonation, coverage depth, relative humidity, W/C, and the use of deicing salts. And a half cell potential method was used at th same time for the purpose of comparing with polarization resistance method.

  • PDF

Peripheral Giant Cell Granuloma in a Dog (개의 말초성 거대세포 육아종(peripheral giant cell granuloma) 증례 보고)

  • Cho, Ho-Seong;Cho, Kyoung-Oh;Park, Nam-Yong
    • Korean Journal of Veterinary Pathology
    • /
    • v.5 no.2
    • /
    • pp.79-80
    • /
    • 2001
  • A gingival mass was detected from a 1-year-old female Great Dane dog. After surgical removal, the lesions recurred in 2 weeks and died of septicemia. Characteristic histologic features were large numbers of multinucleated giant cells which were connected with capillary vessels. Neovascularization was prominent with mononuclear and polynuclear cell infiltration. Overall features of these lesions except for giant cell infiltration were similar to granuloma. From these results, a gingival mass excised from a dog was diagnosed to be a peripheral giant cell granuloma (PGCG). This is the first report of canine subcutaneous PGCG in Korea.

  • PDF

Microfluidic Control for Biological Cell Orientation

  • Namkung, Young-Woo;Park, Jung-Yul;Kim, Byung-Kyu;Park, Jong-Oh;Kim, Jin-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2457-2460
    • /
    • 2003
  • There is a great demand to manipulate biological cell autonomously since biologist should spend much time to obtain skillful manipulation techniques. For this purpose, we propose a cell chip to control, carry, fix and locate the cell. In this paper, we focus on the cell rotator to rotate individual biological cell based on a micro fluidics technology. The cell rotator consists of injection hole and rotation well to rotate a biological cell properly. Under the variation of flow rate in injection hole, the angular velocity of a biological cell is evaluated to find the feasibility of the proposed rotation method. As a practical experiment, Zebrafish egg is employed. Based on this research, we find the possibility of non-contact rotation way that can highly reduce the damage of the biological cell during manipulation. To realize an autonomous biological cell manipulation, a cell chip with manipulation well and micro channel in this research will be utilized effectively in near future.

  • PDF