DOI QR코드

DOI QR Code

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease

  • Ha, Tai-You (Department of Immunology, Chonbuk National University Medical School)
  • Received : 2011.05.24
  • Accepted : 2011.05.27
  • Published : 2011.06.30

Abstract

The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.

Keywords

References

  1. O'Neill LA, Sheedy FJ, McCoy CE: MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11;163-175, 2011 https://doi.org/10.1038/nri2957
  2. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D: Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10;111-122, 2010 https://doi.org/10.1038/nri2708
  3. Baltimore D, Boldin MP, O'Connell RM, Rao DS, Taganov KD: MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9;839-845, 2008 https://doi.org/10.1038/ni.f.209
  4. Slaby O, Svoboda M, Michalek J, Vyzula R: MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 8;102, 2009 https://doi.org/10.1186/1476-4598-8-102
  5. Small EM, Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature 469;336-342, 2011 https://doi.org/10.1038/nature09783
  6. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q: Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31;659-666, 2010 https://doi.org/10.1093/eurheartj/ehq013
  7. Miller BH, Wahlestedt C: MicroRNA dysregulation in psychiatric disease. Brain Res 1338;89-99, 2010 https://doi.org/10.1016/j.brainres.2010.03.035
  8. Belver L, de Yebenes VG, Ramiro AR: MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33; 713-722, 2010 https://doi.org/10.1016/j.immuni.2010.11.010
  9. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C: Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123;282-291, 2011 https://doi.org/10.1161/CIRCULATIONAHA.110.952325
  10. Maes OC, Chertkow HM, Wang E, Schipper HM: Micro- RNA: Implications for Alzheimer Disease and other Human CNS Disorders. Curr Genomics 10;154-168, 2009 https://doi.org/10.2174/138920209788185252
  11. Tili E, Michaille JJ, Calin GA: Expression and function of micro-RNAs in immune cells during normal or disease state. Int J Med Sci 5;73-79, 2008
  12. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM: MicroRNA signatures in human ovarian cancer. Cancer Res 67;8699-8707, 2007 https://doi.org/10.1158/0008-5472.CAN-07-1936
  13. Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466;835-840, 2010 https://doi.org/10.1038/nature09267
  14. Perera RJ, Ray A: MicroRNAs in the search for understanding human diseases. BioDrugs 21;97-104, 2007 https://doi.org/10.2165/00063030-200721020-00004
  15. Ha TY: The Role of MicroRNAs in Regulatory T Cells and in the Immune Response. Immune Netw 11;11-41, 2011 https://doi.org/10.4110/in.2011.11.1.11
  16. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of human microRNA and disease associations. PLoS One 3;e3420, 2008
  17. Garofalo M, Condorelli G, Croce CM: MicroRNAs in diseases and drug response. Curr Opin Pharmacol 8;661-667, 2008 https://doi.org/10.1016/j.coph.2008.06.005
  18. Tomankova T, Petrek M, Kriegova E: Involvement of microRNAs in physiological and pathological processes in the lung. Respir Res 11;159, 2010 https://doi.org/10.1186/1465-9921-11-159
  19. Pallante P, Visone R, Croce CM, Fusco A: Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr Relat Cancer 17;F91-F104, 2010 https://doi.org/10.1677/ERC-09-0217
  20. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 455;58-63, 2008 https://doi.org/10.1038/nature07228
  21. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature 455;64-71, 2008 https://doi.org/10.1038/nature07242
  22. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID: Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol 29;527-585, 2011 https://doi.org/10.1146/annurev-immunol-030409-101317
  23. Lu LF, Liston A: MicroRNA in the immune system, microRNA as an immune system. Immunology 127;291- 298, 2009 https://doi.org/10.1111/j.1365-2567.2009.03092.x
  24. Liston A, Linterman M, Lu LF: MicroRNA in the adaptive immune system, in sickness and in health. J Clin Immunol 30;339-346, 2010 https://doi.org/10.1007/s10875-010-9378-5
  25. Schetter AJ, Heegaard NH, Harris CC: Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31;37-49, 2010 https://doi.org/10.1093/carcin/bgp272
  26. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, McCue PA, Quong AA, Lisanti MP, Pestell RG: microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A 107;8231-8236, 2010 https://doi.org/10.1073/pnas.1002080107
  27. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17;211-215, 2011 https://doi.org/10.1038/nm.2284
  28. Navarro A, Gaya A, Martinez A, Urbano-Ispizua A, Pons A, Balague O, Gel B, Abrisqueta P, Lopez-Guillermo A, Artells R, Montserrat E, Monzo M: MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 111;2825- 2832, 2008 https://doi.org/10.1182/blood-2007-06-096784
  29. Contu R, Latronico MV, Condorelli G: Circulating micro- RNAs as potential biomarkers of coronary artery disease: a promise to be fulfilled? Circ Res 107;573-574, 2010 https://doi.org/10.1161/CIRCRESAHA.110.227983
  30. Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D: miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208;549-560, 2011 https://doi.org/10.1084/jem.20101547
  31. Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Brown R Jr, Chen A, Hornstein E: miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 107;13111-13116, 2010 https://doi.org/10.1073/pnas.1006151107
  32. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ, Tran N, Dedova I, Cairns MJ: Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 17;1156-1168, 2008 https://doi.org/10.1093/hmg/ddn005
  33. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28;1213-1223, 2008 https://doi.org/10.1523/JNEUROSCI.5065-07.2008
  34. Tili E, Michaille JJ, Costinean S, Croce CM: MicroRNAs, the immune system and rheumatic disease. Nat Clin Pract Rheumatol 4;534-541, 2008
  35. De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E, Gavioli R, Negrini M, Furlan R, Granieri E: Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226;165-171, 2010 https://doi.org/10.1016/j.jneuroim.2010.06.009
  36. Leeper NJ, Cooke JP: MicroRNA and mechanisms of impaired angiogenesis in diabetes mellitus. Circulation 123; 236-238, 2011 https://doi.org/10.1161/CIRCULATIONAHA.110.003855
  37. Pandey AK, Agarwal P, Kaur K, Datta M: MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 23;221-232, 2009 https://doi.org/10.1159/000218169
  38. Fulci V, Scappucci G, Sebastiani GD, Giannitti C, Franceschini D, Meloni F, Colombo T, Citarella F, Barnaba V, Minisola G, Galeazzi M, Macino G: miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol 71;206-211, 2010 https://doi.org/10.1016/j.humimm.2009.11.008
  39. Buckner JH: Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10;849-859, 2010 https://doi.org/10.1038/nri2889
  40. Sonkoly E, Pivarcsi A: Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 13;24-38, 2009
  41. Yi R, Fuchs E: MicroRNA-mediated control in the skin. Cell Death Differ 17;229-235, 2010 https://doi.org/10.1038/cdd.2009.92
  42. Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA: The role of microRNA-146a (miR-146a) and its target IL- 1R-associated kinase (IRAK1) in psoriatic arthritis susceptibility. Scand J Immunol 71;382-385, 2010 https://doi.org/10.1111/j.1365-3083.2010.02381.x
  43. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman- Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C: Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81;829- 834, 2007 https://doi.org/10.1086/521200
  44. Mattes J, Collison A, Plank M, Phipps S, Foster PS: Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 106;18704-18709, 2009 https://doi.org/10.1073/pnas.0905063106
  45. Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, Benham AL, Kim J, Soibam B, Harris RA, Coarfa C, Zariff A, Milosavljevic A, Batts LM, Kheradmand F, Gunaratne PH, Corry DB: Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem 285; 30139-30149, 2010 https://doi.org/10.1074/jbc.M110.145698
  46. Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG: MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84;3023- 3032, 2010 https://doi.org/10.1128/JVI.02203-09
  47. Witwer KW, Sisk JM, Gama L, Clements JE: MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 184;2369-2376, 2010 https://doi.org/10.4049/jimmunol.0902712
  48. Belair C, Darfeuille F, Staedel C: Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 15;806-812, 2009 https://doi.org/10.1111/j.1469-0691.2009.02960.x
  49. Liu X, Wang T, Wakita T, Yang W: Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology 398;57-67, 2010 https://doi.org/10.1016/j.virol.2009.11.036
  50. Zhang GL, Li YX, Zheng SQ, Liu M, Li X, Tang H: Suppression of hepatitis B virus replication by microRNA- 199a-3p and microRNA-210. Antiviral Res 88;169-175, 2010 https://doi.org/10.1016/j.antiviral.2010.08.008
  51. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116;281-297, 2004 https://doi.org/10.1016/S0092-8674(04)00045-5
  52. Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11;228-234, 2009 https://doi.org/10.1038/ncb0309-228
  53. Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10;126-139, 2009 https://doi.org/10.1038/nrm2632
  54. Kim VN: Small RNAs: classification, biogenesis, and function. Mol Cells 19;1-15, 2005 https://doi.org/10.1016/j.molcel.2005.05.026
  55. Boyd SD: Everything you wanted to know about small RNA but were afraid to ask. Lab Invest 88;569-578, 2008 https://doi.org/10.1038/labinvest.2008.32
  56. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res 14;1902-1910, 2004 https://doi.org/10.1101/gr.2722704
  57. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103;2257-2261, 2006 https://doi.org/10.1073/pnas.0510565103
  58. Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 6;857-866, 2006 https://doi.org/10.1038/nrc1997
  59. Shenouda SK, Alahari SK: MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28;369-378, 2009 https://doi.org/10.1007/s10555-009-9188-5
  60. Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A: MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16;1087-1095, 2010 https://doi.org/10.1261/rna.1804410
  61. Ambros V: The functions of animal microRNAs. Nature 431;350-355, 2004 https://doi.org/10.1038/nature02871
  62. Hwang HW, Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94;776-780, 2006 https://doi.org/10.1038/sj.bjc.6603023
  63. Alvarez-Garcia I, Miska EA: MicroRNA functions in animal development and human disease. Development 132;4653- 4662, 2005 https://doi.org/10.1242/dev.02073
  64. Di Leva G, Calin GA, Croce CM: MicroRNAs: fundamental facts and involvement in human diseases. Birth Defects Res C Embryo Today 78;180-189, 2006 https://doi.org/10.1002/bdrc.20073
  65. Garzon R, Marcucci G, Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9;775-789, 2010 https://doi.org/10.1038/nrd3179
  66. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 144;646-674, 2011 https://doi.org/10.1016/j.cell.2011.02.013
  67. Soifer HS, Rossi JJ, Saetrom P: MicroRNAs in disease and potential therapeutic applications. Mol Ther 15;2070-2079, 2007 https://doi.org/10.1038/sj.mt.6300311
  68. Lynam-Lennon N, Maher SG, Reynolds JV: The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 84;55-71, 2009 https://doi.org/10.1111/j.1469-185X.2008.00061.x
  69. Zhang B, Pan X, Cobb GP, Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol 302;1-12, 2007 https://doi.org/10.1016/j.ydbio.2006.08.028
  70. Hernando E: microRNAs and cancer: role in tumorigenesis, patient classification and therapy. Clin Transl Oncol 9;155-160, 2007 https://doi.org/10.1007/s12094-007-0029-0
  71. Osaki M, Takeshita F, Ochiya T: MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers 13; 658-670, 2008 https://doi.org/10.1080/13547500802646572
  72. Gebeshuber CA, Zatloukal K, Martinez J: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10;400-405, 2009 https://doi.org/10.1038/embor.2009.9
  73. Hunsberger JG, Austin DR, Chen G, Manji HK: MicroRNAs in mental health: from biological underpinnings to potential therapies. Neuromolecular Med 11;173-182, 2009 https://doi.org/10.1007/s12017-009-8070-5
  74. Baccarelli A, Bollati V: Epigenetics and environmental chemicals. Curr Opin Pediatr 21;243-251, 2009 https://doi.org/10.1097/MOP.0b013e32832925cc
  75. Saini S, Majid S, Dahiya R: Diet, microRNAs and prostate cancer. Pharm Res 27;1014-1026, 2010 https://doi.org/10.1007/s11095-010-0086-x
  76. Marsit CJ, Eddy K, Kelsey KT: MicroRNA responses to cellular stress. Cancer Res 66;10843-10848, 2006 https://doi.org/10.1158/0008-5472.CAN-06-1894
  77. Shin S, Cha HJ, Lee EM, Lee SJ, Seo SK, Jin HO, Park IC, Jin YW, An S: Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol 35;81-86, 2009
  78. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R: Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57;2728-2736, 2008 https://doi.org/10.2337/db07-1252
  79. Gueta K, Molotski N, Gerchikov N, Mor E, Savion S, Fein A, Toder V, Shomron N, Torchinsky A: Teratogen-induced alterations in microRNA-34, microRNA-125b and micro- RNA-155 expression: correlation with embryonic p53 genotype and limb phenotype. BMC Dev Biol 10;20, 2010 https://doi.org/10.1186/1471-213X-10-20
  80. Yang N, Coukos G, Zhang L: MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment. Int J Cancer 122;963-968, 2008
  81. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC: Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66;1277-1281, 2006 https://doi.org/10.1158/0008-5472.CAN-05-3632
  82. Melkamu T, Zhang X, Tan J, Zeng Y, Kassie F: Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis 31; 252-258, 2010 https://doi.org/10.1093/carcin/bgp208
  83. Nelson PT, Wang WX, Rajeev BW: MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18;130-138, 2008 https://doi.org/10.1111/j.1750-3639.2007.00120.x
  84. Ha TY: The role of regulatory T cells in cancer. Immune Netw 9;209-235, 2009 https://doi.org/10.4110/in.2009.9.6.209
  85. Liston A, Lu LF, O'Carroll D, Tarakhovsky A, Rudensky AY: Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 205;1993-2004, 2008 https://doi.org/10.1084/jem.20081062
  86. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, Bluestone JA: Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205;1983-1991, 2008 https://doi.org/10.1084/jem.20080707
  87. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for Dicer in immune regulation. J Exp Med 203;2519-2527, 2006 https://doi.org/10.1084/jem.20061692
  88. Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10;704-714, 2009 https://doi.org/10.1038/nrg2634
  89. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM: Modulation of miR-155 and miR-125b levels following lipopolysaccharide/ TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179;5082-5089, 2007 https://doi.org/10.4049/jimmunol.179.8.5082
  90. Ventura A, Jacks T: MicroRNAs and cancer: short RNAs go a long way. Cell 136;586-591, 2009 https://doi.org/10.1016/j.cell.2009.02.005
  91. Jazbutyte V, Thum T: MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11;926-935, 2010 https://doi.org/10.2174/138945010791591403
  92. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120;1046-1054, 2007
  93. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65;7065-7070, 2005 https://doi.org/10.1158/0008-5472.CAN-05-1783
  94. Waldman SA, Terzic A: Applications of microRNA in cancer: Exploring the advantages of miRNA. Clin Transl Sci 2;248-249, 2009 https://doi.org/10.1111/j.1752-8062.2009.00110.x
  95. Waldman SA, Terzic A: A study of microRNAs in silico and in vivo: diagnostic and therapeutic applications in cancer. FEBS J 276;2157-2164, 2009 https://doi.org/10.1111/j.1742-4658.2009.06934.x
  96. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J: Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451;147-152, 2008 https://doi.org/10.1038/nature06487
  97. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, Karin M: Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470;548-553, 2011 https://doi.org/10.1038/nature09707
  98. Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT, Maitra A: Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9;293-301, 2009 https://doi.org/10.1159/000186051
  99. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26;4442-4452, 2007 https://doi.org/10.1038/sj.onc.1210228
  100. Zhang Y, Li M, Wang H, Fisher WE, Lin PH, Yao Q, Chen C: Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg 33;698-709, 2009 https://doi.org/10.1007/s00268-008-9833-0
  101. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T: Epigenetic silencing of microRNA- 34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68;4123-4132, 2008 https://doi.org/10.1158/0008-5472.CAN-08-0325
  102. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS, Sung JJ: Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58;1375-1381, 2009 https://doi.org/10.1136/gut.2008.167817
  103. Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, Chen HY, Sun XF: Clinicopathological significance of microRNA- 31, -143 and -145 expression in colorectal cancer. Dis Markers 26;27-34, 2009 https://doi.org/10.1155/2009/921907
  104. Nishida N, Yokobori T, Mimori K, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y, Kuwano H, Mori M: MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol 38;1437-1443, 2011
  105. Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X: Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127;118-126, 2010 https://doi.org/10.1002/ijc.25007
  106. Negrini M, Nicoloso MS, Calin GA: MicroRNAs and cancer-- new paradigms in molecular oncology. Curr Opin Cell Biol 21;470-479, 2009 https://doi.org/10.1016/j.ceb.2009.03.002
  107. Wang QZ, Xu W, Habib N, Xu R: Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets 9;572-594, 2009 https://doi.org/10.2174/156800909788486731
  108. Jiang L, Huang Q, Zhang S, Zhang Q, Chang J, Qiu X, Wang E: Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 10;318, 2010 https://doi.org/10.1186/1471-2407-10-318
  109. Lee YS, Dutta A: MicroRNAs in cancer. Annu Rev Pathol 4;199-227, 2009 https://doi.org/10.1146/annurev.pathol.4.110807.092222
  110. Saito Y, Suzuki H, Hibi T: The role of microRNAs in gastrointestinal cancers. J Gastroenterol 44(Suppl 19);18-22, 2009 https://doi.org/10.1007/s00535-008-2285-3
  111. Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, Zhang WG, Nan KJ, Song TS, Huang C: MicroRNA profiling of human gastric cancer. Mol Med Report 2;963-970, 2009
  112. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Haferlach T, Liso A, Diverio D, Mancini M, Meloni G, Foa R, Martelli MF, Mecucci C, Croce CM, Falini B: Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 105;3945-3950, 2008 https://doi.org/10.1073/pnas.0800135105
  113. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101;2999-3004, 2004 https://doi.org/10.1073/pnas.0307323101
  114. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K: MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113;396-402, 2009
  115. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207;243-249, 2005 https://doi.org/10.1002/path.1825
  116. Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, Kipps TJ, Croce CM: Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Res 61; 6640-6648, 2001
  117. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM: MicroRNA 29b functions in acute myeloid leukemia. Blood 114;5331-5341, 2009 https://doi.org/10.1182/blood-2009-03-211938
  118. Mantovani A, Romero P, Palucka AK, Marincola FM: Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371;771-783, 2008 https://doi.org/10.1016/S0140-6736(08)60241-X
  119. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137;1005-1017, 2009 https://doi.org/10.1016/j.cell.2009.04.021
  120. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE: MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93;1600-1608, 2008 https://doi.org/10.1210/jc.2007-2696
  121. Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, Li X, Tang H: MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 276;5537-5546, 2009 https://doi.org/10.1111/j.1742-4658.2009.07237.x
  122. Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor- derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110;13-21, 2008 https://doi.org/10.1016/j.ygyno.2008.04.033
  123. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14;1271- 1277, 2008 https://doi.org/10.1038/nm.1880
  124. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353;1793-1801, 2005 https://doi.org/10.1056/NEJMoa050995
  125. Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S, Majid S, Liu J, Khatri G, Tanaka Y, Dahiya R: The functional significance of microRNA-145 in prostate cancer. Br J Cancer 103;256-264, 2010 https://doi.org/10.1038/sj.bjc.6605742
  126. Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, Sunakozaka H, Sakai Y, Horimoto K, Kaneko S: Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 49;1098-1112, 2009 https://doi.org/10.1002/hep.22749
  127. Zhao H, Wang D, Du W, Gu D, Yang R: MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 74;149-155, 2010 https://doi.org/10.1016/j.critrevonc.2009.05.001
  128. Small EM, Frost RJ, Olson EN: MicroRNAs add a new dimension to cardiovascular disease. Circulation 121;1022-1032, 2010 https://doi.org/10.1161/CIRCULATIONAHA.109.889048
  129. Barringhaus KG, Zamore PD: MicroRNAs: regulating a change of heart. Circulation 119;2217-2224, 2009 https://doi.org/10.1161/CIRCULATIONAHA.107.715839
  130. Chu CY, Rana TM: Small RNAs: regulators and guardians of the genome. J Cell Physiol 213;412-419, 2007 https://doi.org/10.1002/jcp.21230
  131. Latronico MV, Condorelli G: MicroRNAs and cardiac pathology. Nat Rev Cardiol 6;419-429, 2009
  132. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B: Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3;499-506, 2010 https://doi.org/10.1161/CIRCGENETICS.110.957415
  133. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller- Ardogan M, Bonauer A, Zeiher AM, Dimmeler S: Circulating microRNAs in patients with coronary artery disease. Circ Res 107;677-684, 2010 https://doi.org/10.1161/CIRCRESAHA.109.215566
  134. Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N: Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55;1944-1949, 2009 https://doi.org/10.1373/clinchem.2009.125310
  135. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105;10513-10518, 2008 https://doi.org/10.1073/pnas.0804549105
  136. Latronico MV, Catalucci D, Condorelli G: Emerging role of microRNAs in cardiovascular biology. Circ Res 101; 1225-1236, 2007 https://doi.org/10.1161/CIRCRESAHA.107.163147
  137. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT: Altered microRNA expression in human heart disease. Physiol Genomics 31;367-373, 2007 https://doi.org/10.1152/physiolgenomics.00144.2007
  138. van Rooij E, Marshall WS, Olson EN: Toward microRNAbased therapeutics for heart disease: the sense in antisense. Circ Res 103;919-928, 2008 https://doi.org/10.1161/CIRCRESAHA.108.183426
  139. Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J: Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108;305-313, 2011 https://doi.org/10.1161/CIRCRESAHA.110.228437
  140. Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J, Simard MJ, Bonnet S: Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 208;535-548, 2011 https://doi.org/10.1084/jem.20101812
  141. Abdellatif M: The role of microRNA-133 in cardiac hypertrophy uncovered. Circ Res 106;16-18, 2010 https://doi.org/10.1161/CIRCRESAHA.109.212183

Cited by

  1. Integration of MicroRNA Databases to Study MicroRNAs Associated with Multiple Sclerosis vol.45, pp.3, 2011, https://doi.org/10.1007/s12035-012-8270-0
  2. Classification of the Four Main Types of Lung Cancer Using a MicroRNA-Based Diagnostic Assay vol.14, pp.5, 2011, https://doi.org/10.1016/j.jmoldx.2012.03.004
  3. How novel molecular diagnostic technologies and biomarkers are revolutionizing genetic testing and patient care vol.12, pp.1, 2011, https://doi.org/10.1586/erm.11.85
  4. Integrative Analysis in Oral Squamous Cell Carcinoma Reveals DNA Copy Number-Associated miRNAs Dysregulating Target Genes vol.147, pp.3, 2011, https://doi.org/10.1177/0194599812442490
  5. Systematic Analysis of Small RNAs Associated with Human Mitochondria by Deep Sequencing: Detailed Analysis of Mitochondrial Associated miRNA vol.7, pp.9, 2011, https://doi.org/10.1371/journal.pone.0044873
  6. Tumor suppressive miR-509-5p contributes to cell migration, proliferation and antiapoptosis in renal cell carcinoma vol.182, pp.4, 2013, https://doi.org/10.1007/s11845-013-0941-y
  7. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes vol.7, pp.None, 2011, https://doi.org/10.1186/1752-0509-7-101
  8. MicroRNA control in the development of systemic autoimmunity vol.15, pp.1, 2011, https://doi.org/10.1186/ar4131
  9. Feasibility of circulating miRNA microarray analysis from archival plasma samples vol.437, pp.2, 2011, https://doi.org/10.1016/j.ab.2013.03.002
  10. MicroRNA-155 Confers Encephalogenic Potential to Th17 Cells by Promoting Effector Gene Expression vol.190, pp.12, 2011, https://doi.org/10.4049/jimmunol.1300351
  11. Identification of miR-7 as an oncogene in renal cell carcinoma vol.44, pp.6, 2011, https://doi.org/10.1007/s10735-013-9516-5
  12. The role of vitamin D deficiency in cardiovascular disease: where do we stand in 2013? vol.87, pp.12, 2011, https://doi.org/10.1007/s00204-013-1152-z
  13. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma vol.140, pp.3, 2014, https://doi.org/10.1007/s00432-013-1577-z
  14. Gene expression analysis in RA: towards personalized medicine vol.14, pp.2, 2014, https://doi.org/10.1038/tpj.2013.48
  15. Stable overexpression of miR-17 enhances recombinant protein production of CHO cells vol.175, pp.None, 2014, https://doi.org/10.1016/j.jbiotec.2014.01.032
  16. Role of epigenetic mechanisms in the development of chronic complications of diabetes vol.105, pp.2, 2011, https://doi.org/10.1016/j.diabres.2014.03.019
  17. A Small-Molecule Modulator of the Tumor-Suppressor miR34a Inhibits the Growth of Hepatocellular Carcinoma vol.74, pp.21, 2011, https://doi.org/10.1158/0008-5472.can-14-0855
  18. MicroRNAs in colorectal cancer: Role in metastasis and clinical perspectives vol.20, pp.45, 2011, https://doi.org/10.3748/wjg.v20.i45.17011
  19. microRNA133a TargetsFoxl2and Promotes Differentiation of C2C12 into Myogenic Progenitor Cells vol.34, pp.1, 2015, https://doi.org/10.1089/dna.2014.2522
  20. Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas vol.12, pp.None, 2015, https://doi.org/10.1186/s12974-015-0315-7
  21. Viral and Host Strategies for Regulation of Latency and Reactivation in Equid Herpesviruses vol.10, pp.10, 2015, https://doi.org/10.3923/ajava.2015.669.689
  22. microRNA-184 functions as tumor suppressor in renal cell carcinoma vol.9, pp.3, 2011, https://doi.org/10.3892/etm.2015.2199
  23. Regulation of lipid metabolism by microRNAs vol.26, pp.3, 2011, https://doi.org/10.1097/mol.0000000000000186
  24. Molecular biomarkers in colorectal carcinoma vol.16, pp.10, 2015, https://doi.org/10.2217/pgs.15.63
  25. Analysis of the microRNA expression profile of normal human dermal papilla cells treated with 5α-dihydrotestosterone vol.12, pp.1, 2015, https://doi.org/10.3892/mmr.2015.3478
  26. MicroRNA and Transcription Factor Mediated Regulatory Network Analysis Reveals Critical Regulators and Regulatory Modules in Myocardial Infarction vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0135339
  27. Variants of MicroRNA Genes: Gender-Specific Associations with Multiple Sclerosis Risk and Severity vol.16, pp.8, 2015, https://doi.org/10.3390/ijms160820067
  28. Platelet-derived miR-103b as a novel biomarker for the early diagnosis of type 2 diabetes vol.52, pp.5, 2011, https://doi.org/10.1007/s00592-015-0733-0
  29. Genetic Markers Associated with Clinical Outcomes in Patients with Inflammatory Bowel Disease : vol.21, pp.11, 2015, https://doi.org/10.1097/mib.0000000000000500
  30. miR-155 Regulated Inflammation Response by the SOCS1-STAT3-PDCD4 Axis in Atherogenesis vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/8060182
  31. ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry vol.22, pp.11, 2011, https://doi.org/10.1261/rna.057513.116
  32. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia vol.7, pp.None, 2016, https://doi.org/10.3389/fphar.2016.00290
  33. MicroRNA aberrations: An emerging field for gallbladder cancer management vol.22, pp.5, 2011, https://doi.org/10.3748/wjg.v22.i5.1787
  34. Increased oncogenic microRNA-18a expression in the peripheral blood of patients with prostate cancer: A potential novel non-invasive biomarker vol.11, pp.2, 2011, https://doi.org/10.3892/ol.2015.4014
  35. miR-19a/b modulates lung cancer cells metastasis through suppression of MXD1 expression vol.12, pp.3, 2016, https://doi.org/10.3892/ol.2016.4881
  36. Upregulated miR-193a-3p as an oncogene in esophageal squamous cell carcinoma regulating cellular proliferation, migration and apoptosis vol.12, pp.6, 2011, https://doi.org/10.3892/ol.2016.5229
  37. Expression of DROSHA in the Uterus of Mice in Early Pregnancy and Its Potential Significance During Embryo Implantation vol.23, pp.2, 2011, https://doi.org/10.1177/1933719115584444
  38. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells vol.11, pp.3, 2011, https://doi.org/10.1371/journal.pone.0150842
  39. Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Diabetic Nephropathy in Rats vol.11, pp.4, 2011, https://doi.org/10.1371/journal.pone.0154055
  40. MicroRNA-17 family as novel biomarkers for cancer diagnosis: a meta-analysis based on 19 articles vol.37, pp.5, 2016, https://doi.org/10.1007/s13277-015-4484-x
  41. MicroRNA expression profiling in children with different asthma phenotypes vol.51, pp.6, 2011, https://doi.org/10.1002/ppul.23331
  42. Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells vol.14, pp.1, 2016, https://doi.org/10.3892/mmr.2016.5337
  43. The insights of Let‐7 miRNAs in oncogenesis and stem cell potency vol.20, pp.9, 2011, https://doi.org/10.1111/jcmm.12861
  44. Downregulated miR-486-5p acts as a tumor suppressor in esophageal squamous cell carcinoma vol.12, pp.5, 2016, https://doi.org/10.3892/etm.2016.3783
  45. Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification vol.184, pp.8, 2011, https://doi.org/10.1007/s00604-017-2246-8
  46. miR-138 promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through the SIRT1/p-STAT3 pathway vol.162, pp.9, 2011, https://doi.org/10.1007/s00705-017-3423-0
  47. A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction vol.13, pp.6, 2011, https://doi.org/10.1039/c6mb00853d
  48. Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients vol.22, pp.3, 2017, https://doi.org/10.1080/1354750x.2016.1204004
  49. Overexpression of miR-10b in colorectal cancer patients: Correlation with TWIST-1 and E-cadherin expression vol.39, pp.3, 2011, https://doi.org/10.1177/1010428317695916
  50. The biological functions and mechanism of miR-212 in prostate cancer proliferation, migration and invasion via targeting Engrailed-2 vol.38, pp.3, 2011, https://doi.org/10.3892/or.2017.5805
  51. Downregulation of miR-451 in Tunisian chronic myeloid leukemia patients: potential implication in imatinib resistance vol.22, pp.4, 2017, https://doi.org/10.1080/10245332.2016.1252020
  52. Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications vol.14, pp.6, 2011, https://doi.org/10.1080/14789450.2017.1333424
  53. Peroxisome proliferator-activated receptor-γ enhances human pulmonary artery smooth muscle cell apoptosis through microRNA-21 and programmed cell death 4 vol.313, pp.2, 2011, https://doi.org/10.1152/ajplung.00532.2016
  54. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress vol.9, pp.9, 2011, https://doi.org/10.3390/nu9090966
  55. Dysregulation of Mir-196b in Head and Neck Cancers Leads to Pleiotropic Effects in the Tumor Cells and Surrounding Stromal Fibroblasts vol.7, pp.None, 2011, https://doi.org/10.1038/s41598-017-18138-8
  56. Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research vol.77, pp.24, 2011, https://doi.org/10.1158/0008-5472.can-17-2142
  57. Analysis of Circulating microRNAs and Their Post-Transcriptional Modifications in Cancer Serum by On-Line Solid-Phase Extraction-Capillary Electrophoresis-Mass Spectrometry vol.90, pp.11, 2011, https://doi.org/10.1021/acs.analchem.8b00405
  58. Bio-cleavable nanoprobes for target-triggered catalytic hairpin assembly amplification detection of microRNAs in live cancer cells vol.10, pp.37, 2011, https://doi.org/10.1039/c8nr05229h
  59. Rapid and label-free fluorescence bioassay for microRNA based on exonuclease III-assisted cycle amplification vol.8, pp.29, 2011, https://doi.org/10.1039/c8ra01605d
  60. A General Overview on Non-coding RNA-Based Diagnostic and Therapeutic Approaches for Liver Diseases vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.00805
  61. Somatostatin Analogue Treatment Primarily Induce miRNA Expression Changes and Up-Regulates Growth Inhibitory miR-7 and miR-148a in Neuroendocrine Cells vol.9, pp.7, 2011, https://doi.org/10.3390/genes9070337
  62. MicroRNA-155-5p suppresses the migration and invasion of lung adenocarcinoma A549 cells by targeting Smad 2 vol.16, pp.2, 2011, https://doi.org/10.3892/ol.2018.8889
  63. A Review of Physical Activity and Circulating miRNA Expression: Implications in Cancer Risk and Progression vol.27, pp.1, 2018, https://doi.org/10.1158/1055-9965.epi-16-0969
  64. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors vol.8, pp.None, 2018, https://doi.org/10.3389/fonc.2018.00226
  65. Overexpression of microRNAs miR-9, -98, and -199 Correlates with the Downregulation of HK2 Expression in Colorectal Cancer vol.52, pp.2, 2018, https://doi.org/10.1134/s0026893318020140
  66. Molecular pathogenesis of interstitial cystitis based on microRNA expression signature: miR-320 family-regulated molecular pathways and targets vol.63, pp.5, 2011, https://doi.org/10.1038/s10038-018-0419-x
  67. Pax-5 Inhibits NF-κB Activity in Breast Cancer Cells Through IKKε and miRNA-155 Effectors vol.23, pp.3, 2011, https://doi.org/10.1007/s10911-018-9404-4
  68. Combining Extracellular miRNA Determination with Microfluidic 3D Cell Cultures for the Assessment of Nephrotoxicity: a Proof of Concept Study vol.20, pp.5, 2011, https://doi.org/10.1208/s12248-018-0245-2
  69. Intracellular microRNA quantification in intact cells: a novel strategy based on reduced graphene oxide-based fluorescence quenching vol.8, pp.3, 2011, https://doi.org/10.1557/mrc.2018.120
  70. Regulation of Sphingolipid Metabolism by MicroRNAs: A Potential Approach to Alleviate Atherosclerosis vol.6, pp.3, 2011, https://doi.org/10.3390/diseases6030082
  71. MicroRNA-30a suppresses the proliferation, migration and invasion of human renal cell carcinoma cells by directly targeting ADAM9 vol.16, pp.3, 2018, https://doi.org/10.3892/ol.2018.8999
  72. Burkitt lymphoma-associated network construction and important network motif analysis vol.16, pp.3, 2018, https://doi.org/10.3892/ol.2018.9010
  73. Micro-RNAs involved in cellular proliferation have altered expression profiles in granulosa of young women with diminished ovarian reserve vol.35, pp.10, 2011, https://doi.org/10.1007/s10815-018-1239-9
  74. Serum and Lipoprotein Particle miRNA Profile in Uremia Patients vol.9, pp.11, 2018, https://doi.org/10.3390/genes9110533
  75. Synchronized Orchestration of miR-99b and let-7g Positively Regulates Rotavirus Infection by Modulating Autophagy vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-018-38473-8
  76. Three new circulating microRNAs may be associated with wet age-related macular degeneration vol.79, pp.6, 2011, https://doi.org/10.1080/00365513.2019.1637931
  77. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients vol.26, pp.22, 2011, https://doi.org/10.2174/0929867324666171005114456
  78. Roles of MicroRNA-34a in Epithelial to Mesenchymal Transition, Competing Endogenous RNA Sponging and Its Therapeutic Potential vol.20, pp.4, 2019, https://doi.org/10.3390/ijms20040861
  79. Circulating liver-specific microRNAs as noninvasive diagnostic biomarkers of hepatic diseases in human vol.24, pp.2, 2011, https://doi.org/10.1080/1354750x.2018.1528631
  80. Milk MicroRNAs in Health and Disease vol.18, pp.3, 2019, https://doi.org/10.1111/1541-4337.12424
  81. Retinal miRNA Functions in Health and Disease vol.10, pp.5, 2011, https://doi.org/10.3390/genes10050377
  82. Epigenetic Effects of n-3 LCPUFAs: A Role in Pediatric Metabolic Syndrome vol.20, pp.9, 2011, https://doi.org/10.3390/ijms20092118
  83. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential vol.234, pp.6, 2011, https://doi.org/10.1002/jcp.27776
  84. MiR-27a promotes the autophagy and apoptosis of IL-1β treated-articular chondrocytes in osteoarthritis through PI3K/AKT/mTOR signaling vol.11, pp.16, 2011, https://doi.org/10.18632/aging.102194
  85. MicroRNA Assisted Gene Regulation in Colorectal Cancer vol.20, pp.19, 2019, https://doi.org/10.3390/ijms20194899
  86. miR-301a Regulates Inflammatory Response to Japanese Encephalitis Virus Infection via Suppression of NKRF Activity vol.203, pp.8, 2011, https://doi.org/10.4049/jimmunol.1900003
  87. MicroRNA‐498 promotes proliferation, migration, and invasion of prostate cancer cells and decreases radiation sensitivity by targeting PTEN vol.35, pp.11, 2011, https://doi.org/10.1002/kjm2.12108
  88. Transcriptomic studies provide insights into the tumor suppressive role of miR-146a-5p in non-small cell lung cancer (NSCLC) cells vol.16, pp.12, 2011, https://doi.org/10.1080/15476286.2019.1657351
  89. The Importance of Small Non-Coding RNAs in Human Reproduction: A Review Article vol.13, pp.None, 2011, https://doi.org/10.2147/tacg.s207491
  90. The Promising Signatures of Circulating microRNA-145 in Epithelial Ovarian Cancer Patients vol.9, pp.1, 2011, https://doi.org/10.2174/2211536608666190225111234
  91. Quantification of purified endogenous miRNAs with high sensitivity and specificity vol.11, pp.1, 2020, https://doi.org/10.1038/s41467-020-19865-9
  92. MiRNAs: A New Approach to Predict and Overcome Resistance to Anticancer Drugs vol.7, pp.None, 2011, https://doi.org/10.2174/2212697x07666200130092419
  93. The protective role of MiR-206 in regulating cardiomyocytes apoptosis induced by ischemic injury by targeting PTP1B vol.40, pp.1, 2011, https://doi.org/10.1042/bsr20191000
  94. Bioinformatics prediction and experimental validation of a novel microRNA: hsa‐miR‐B43 within human CDH4 gene with a potential metastasis‐related function in breast cancer vol.121, pp.2, 2011, https://doi.org/10.1002/jcb.29367
  95. miRNA expression in advanced Algerian breast cancer tissues vol.15, pp.2, 2011, https://doi.org/10.1371/journal.pone.0227928
  96. A miR-1275 mimic protects myocardiocyte apoptosis by regulating the Wnt/NF-κB pathway in a rat model of myocardial ischemia-reperfusion-induced myocardial injury vol.466, pp.1, 2011, https://doi.org/10.1007/s11010-020-03695-w
  97. Epigenetic alterations in female urogenital organs cancer: Premise, properties, and perspectives vol.7, pp.None, 2011, https://doi.org/10.1016/j.sciaf.2020.e00318
  98. Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis vol.126, pp.2, 2011, https://doi.org/10.1080/13813455.2018.1499119
  99. Association between Genetic Polymorphisms in microRNA Machinery Genes and Risk of Papillary Thyroid Carcinoma vol.26, pp.2, 2011, https://doi.org/10.1007/s12253-019-00688-z
  100. Functional Link between miR-200a and ELK3 Regulates the Metastatic Nature of Breast Cancer vol.12, pp.5, 2011, https://doi.org/10.3390/cancers12051225
  101. Focus on MicroRNAs as Biomarker in Pediatric Diseases vol.26, pp.None, 2011, https://doi.org/10.2174/1381612826666201021125512
  102. miR-708-5p targets oncogenic prostaglandin E2 production to suppress a pro-tumorigenic phenotype in lung cancer cells vol.11, pp.26, 2020, https://doi.org/10.18632/oncotarget.27614
  103. Importance of the Use of Oxidative Stress Biomarkers and Inflammatory Profile in Aqueous and Vitreous Humor in Diabetic Retinopathy vol.9, pp.9, 2020, https://doi.org/10.3390/antiox9090891
  104. Non-Coding RNAs and Hereditary Hemorrhagic Telangiectasia vol.9, pp.10, 2020, https://doi.org/10.3390/jcm9103333
  105. MicroRNAs target the Wnt/β-catenin signaling pathway to regulate epithelial-mesenchymal transition in cancer vol.44, pp.4, 2020, https://doi.org/10.3892/or.2020.7703
  106. miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis vol.14, pp.9, 2011, https://doi.org/10.1080/17435390.2020.1808727
  107. Cell-free nucleic acid patterns in disease prediction and monitoring—hype or hope? vol.11, pp.4, 2011, https://doi.org/10.1007/s13167-020-00226-x
  108. The impacts of intrauterine Bisphenol A exposure on pregnancy and expression of miRNAs related to heart development and diseases in animal model vol.10, pp.None, 2011, https://doi.org/10.1038/s41598-020-62420-1
  109. MicroRNA-210 Regulates Endoplasmic Reticulum Stress and Apoptosis in Porcine Embryos vol.11, pp.1, 2011, https://doi.org/10.3390/ani11010221
  110. MiRNA Regulatory Functions in Photoreceptors vol.8, pp.None, 2011, https://doi.org/10.3389/fcell.2020.620249
  111. Investigation of microRNA-10b values for the discrimination of metastasis due to melanoma vol.26, pp.1, 2011, https://doi.org/10.4103/jrms.jrms_573_20
  112. MicroRNA-Based Therapeutics for Drug-Resistant Colorectal Cancer vol.14, pp.2, 2021, https://doi.org/10.3390/ph14020136
  113. The Role of Deregulated MicroRNAs in Age-Related Macular Degeneration Pathology vol.10, pp.2, 2011, https://doi.org/10.1167/tvst.10.2.12
  114. Can microsomal RNA be a biomarker in pulmonary hypertension secondary to bronchopulmonary dysplasia? vol.34, pp.9, 2011, https://doi.org/10.1080/14767058.2019.1638107
  115. A compact fiber-integrated optofluidic platform for highly specific microRNA Förster resonance energy transfer detection vol.146, pp.14, 2011, https://doi.org/10.1039/d1an00324k
  116. MicroRNA Delivery by Graphene-Based Complexes into Glioblastoma Cells vol.26, pp.19, 2011, https://doi.org/10.3390/molecules26195804
  117. MiR-27a-3p promotes the osteogenic differentiation by activating CRY2/ERK1/2 axis vol.27, pp.1, 2011, https://doi.org/10.1186/s10020-021-00303-5
  118. MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? vol.10, pp.12, 2011, https://doi.org/10.3390/cells10123374
  119. MicroRNAs as Potential Biomarkers for Exercise-Based Cancer Rehabilitation in Cancer Survivors vol.11, pp.12, 2011, https://doi.org/10.3390/life11121439