• Title/Summary/Keyword: GPS Node

Search Result 97, Processing Time 0.027 seconds

Timestamps based sequential Localization for Linear Wireless Sensor Networks (선형 무선 센서 네트워크를 위한 시각소인 기반의 순차적 거리측정 기법)

  • Park, Sangjun;Kang, Jungho;Kim, Yongchul;Kim, Young-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1840-1848
    • /
    • 2017
  • Linear wireless sensor networks typically construct a network topology with a high reliability through sequential 1:1 mapping among sensor nodes, so that they are used in various surveillance applications of major national infrastructures. Most existing techniques for identifying sensor nodes in those networks are using GPS, AOA, and RSSI mechanisms. However, GPS or AOA based node identification techniques affect the size or production cost of the nodes so that it is not easy to construct practical sensor networks. RSSI based techniques may have a high deviation regrading location identification according to propagation environments and equipment quality so that complexity of error correction algorithm may increase. We propose a timestamps based sequential localization algorithm that uses transmit and receive timestamps in a message between sensor nodes without using GPS, AOA, and RSSI techniques. The algorithms for distance measurement between each node are expected to measure distance within up to 1 meter in case of an crystal oscillator of 300MHz or more.

Guaranteeing delay bounds based on the Bandwidth Allocation Scheme (패킷 지연 한계 보장을 위한 공평 큐잉 기반 대역할당 알고리즘)

  • 정대인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1134-1143
    • /
    • 2000
  • We propose a scheduling algorithm, Bandwidth Allocation Scheme (BAS), that guarantees bounded delay in a switching node. It is based on the notion of the GPS (Generalized Processor Sharing) mechanism, which has clarified the concept of fair queueing with a fluid-flow hypothesis of traffic modeling. The main objective of this paper is to determine the session-level weights that define the GPS sewer. The way of introducing and derivation of the so-called system equation' implies the approach we take. With multiple classes of traffic, we define a set of service curves:one for each class. Constrained to the required profiles of individual service curves for delay satisfaction, the sets of weights are determined as a function of both the delay requirements and the traffic parameters. The schedulability test conditions, which are necessary to implement the call admission control, are also derived to ensure the proposed bandwidth allocation scheme' be able to support delay guarantees for all accepted classes of traffic. It is noticeable that the values of weights are tunable rather than fixed in accordance with the varying system status. This feature of adaptability is beneficial towards the enhanced efficiency of bandwidth sharing.

  • PDF

Design and Implementation of High Throughput Geographical Handoff Using GPS Information (GPS정보를 이용한 위치기반 핸드오프의 설계 및 구현)

  • Han, Seung-ho;Yang, Seung-chur;Kim, Jong-duok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.80-83
    • /
    • 2009
  • The most popular communication protocol is those defined by the IEEE 802.11 WLAN to support broadband internet connection. The demand for real-time multimedia service is increasing through WLAN on the road. The Hand-off function of mobile terminal is essential to support mobility. But, the hand-off function of IEEE 802.11 WLANs has the latency up to 300ms, and recent research has focusing on channel scanning and reconnection to AP and certification process of AP. It is also the lack of consideration in related works that hand-off happens frequently when the mobile node is moving. This paper proposed the hand-off algorithm that guarantees high throughput and estimates the point which may occur hand-off using GPS information and RSSI. We implement the proposed hand-off function that achieves the best performance.

  • PDF

A Handover Mechanism for IEEE 802.11 Wireless Networks using GPS and SNR (IEEE 802.11 무선 네트워크에서 GPS와 SNR을 이용한 핸드오버 메커니즘)

  • Yoon, In-Su;Chung, Sang-Hwa;Kim, Jeong-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.256-262
    • /
    • 2009
  • In this paper, we propose a mechanism for increasing the handover performance of the IEEE 802.11 link layer. The mechanism reduces the number of scanning channels by referencing an AP map based on GPS. Also, by monitoring the SNRs of the mobile node and neighbor APs, it enables the handover to maintain a higher SNR than a given threshold. The experimental results establish that it has a disconnection ratio of 6.7% and an average SNR of 16.8 dB. It is 4.1% lower disconnection ratio and 26% higher SNR than the mechanism used by MadWifi.

Scalable and Low Cost Localization Method for Wireless Sensor Networks (확장성과 비용을 고려한 무선 센서 네트워크에서의 위치 추정 기법)

  • Choi, Jae-Young;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.139-142
    • /
    • 2003
  • Location information of individual nodes is useful for routing and some other functions in wireless sensor networks. Each node can use GPS to know its position. However, the GPS service can not be practical to use due to cost efficiency, power, and computing capability. This paper proposes the localization method to make nodes know their location in case of a few nodes knows their position information. The proposed method is named as VALT (Virtual Anchor based Localization using Triangulation method). It uses the virtual anchor concept and calculates the location of individual nodes by means of the triangulation method. This method helps all nodes to determine their position with low cost and high scalability.

  • PDF

Sensor Node Localization Scheme using Four Mobile Robots (4대의 이동형 로봇을 활용한 센서 노드 위치확정 방법)

  • Lee, Woo-Sik;Kim, Nam-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.521-528
    • /
    • 2011
  • In sensor network environment, it is very important to localize sensor nodes. In order to know the position of nodes without GPS signals, the anchor robot approach is representatively used. Therefore, in this paper, we propose 4-Robot Localization Scheme (4RLS) that uses four mobile robots to efficiently localize sensor nodes for the fast time. Then, we show the improved performance of 4RLS in comparison with previously used three robot scheme through the real implementation and analysis.

Pedestrian Network Models for Mobile Smart Tour Guide Services

  • Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • The global positioning system (GPS)-enabled mobile phones provide location-based applications such as car and pedestrian navigation services. The pedestrian navigation services provide safe and comfortable route and path guidance for pedestrians and handicapped or elderly people. One of the essential components for a navigation system is a spatial database used to perform navigation and routing functions. In this paper, we develop modeling and categorization of pedestrian path components for smart tour guide services using the mobile pedestrian navigation application. We create pedestrian networks using 2D base map and sky view map in urban area. We also construct pedestrian networks and attributes of node, link, and POI using on-site GPS data and photos for smart pedestrian tour guide in the major walking tourist spots in Jeju.

Location-aware Clustering for Efficient Data Gathering in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 데이터 수집을 위한 위치 기반의 클러스터링)

  • Chang, Hyeong-Jun;Lee, In-Chul;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1893-1894
    • /
    • 2008
  • Advances in hardware and wireless network technologies have placed us at the doorstep of a new era where small wireless devices will provide access to information anytime, anywhere as well as actively participate in creating smart environments. In this paper, we propose location-aware clustering method in wireless sensor networks. Previous clustering algorithm assumes that all nodes know its own location by GPS. But, it is unrealistic because of GPS module cost and large energy consumption. So, we operate localization ahead of cluster set-up phase. And Considering node density and geographic information, Cluster Heads are elected uniformly. Moreover, communication between CHs is prolonged network lifetime.

  • PDF

Position Estimation of Chirp Spread Spectrum Node based on Unscented Kalman Filter (Unscented 칼만 필터 기반의 chirp spread spectrum 노드 위치 추정)

  • Cho, Hyeon-Woo;Ban, Sung-Jun;Lee, Young-Hun;Joen, Young-Ju;Kim, Sang-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.187-189
    • /
    • 2009
  • Position estimation in indoor is significant problem, because GPS which is usually used for outdoor positioning cannot be utilized to indoor positioning. Sensor network can be a solution for the positioning. Recently, chirp spread spectrum(CSS) specified in IEEE 802.15.4a provides an ability of ranging. Based on the results of the ranging, a position of a CSS node can be calculated by using trilateration. In this case, Kalman filter can be applied to the trilateration because of the measurement noise. In this paper, we apply the unscented Kalman filter for the trilateration. The trilateration can be represented to a nonlinear state space equation, and the unscented Kalman filter is suitable for nonlinear state space equation. Through the experimental results. we show the accuracy of the estimated position.

  • PDF

Implementation of the outdoor location tracking system by using Zigbee (Zigbee를 이용한 실외 위치추정 시스템 구현)

  • Kim, Hwan-Yong;Lim, Soon-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.306-310
    • /
    • 2012
  • Location tracking system represents position by searching objects and humans. In this paper I would like to write about RF chip support Zigbee which is called CC2420. In simulated network circumstance, we can get the information about mobile-node by sending it to sink-node. Position finding is in error by 3m at outdoor environment. The error scale is acceptable within easy range of naked eyes. It can be overcome by using GPS information and Google maps with the wireless networking background.