• Title/Summary/Keyword: GPS Data

Search Result 1,974, Processing Time 0.034 seconds

The Coordinates Computation of the GPS Base Station by Precise Point Positioning (정밀절대측위(PPP)기법에 의한 GPS 기준점 좌표의 산정)

  • 이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.145-152
    • /
    • 1999
  • JPL(Jet Propulsion Laboratory) has been routinely produced the precise GPS ephemeris and clock's correction parameter using data collected from globally distributed permanent GPS tracking stations, and has been offering the automated GPS data analysis(Precise Point Positioning: PPP) service by using them. In this study, after investigating the potential capacity of JPL's PPP service, the coordinates computation of the GPS base station by this service were investigated. For this, the dual frequency P codes data of 24 hours were observed from continuously operating four reference stations in USA. sent to the JPL's main computer through E-mail and/or ftp, and then were processed by Gipsy/Oasis-II (GOA-II) software with the precise GPS transmitter parameters. Centimeter-level positioning results were available to obtain in X, Y, Z geocentric rectangular coordinate system.

  • PDF

Performance Analysis of Real-Time Kinematic GPS Positioning using Continuous Operating Reference Station

  • Lee In-Su;Lee Jae-One;An Sang-Jun
    • Spatial Information Research
    • /
    • v.12 no.4 s.31
    • /
    • pp.371-382
    • /
    • 2004
  • Continuously Operating Reference Stations (CORS) provides GPS measurements to support high accuracy CPS positioning. The CORS improves GPS positioning productivity by eliminating the requirement for GPS users to operate two receivers. Previously, this is achieved by providing data from CORS to users in post-mission mode. However, the efficiency of the CORS will be maximized by upgrading it in real-time operation using RTK-GPS surveying because users can obtain centimeter-level accuracy in real-time without operating their own reference stations. In this research, authors extracted the arbitrary point's coordinate which is using GPS CORS data, now served in RINEX FORMAT via Internet, with observation network of the existing triangulation and GPS CORS data. And then, RTK GPS was performed with this arbitrary point as reference station.

  • PDF

Evaluation of GPS Data Applicability to Traffic Information Collection after SA Removal (SA해제 이후 GPS데이터의 교통정보수집 적용가능성 평가)

  • Choi, Kee-Choo;Jana, Jeong-Ah;Shim, Sang-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.1 s.28
    • /
    • pp.11-20
    • /
    • 2004
  • The purpose of this paper is to evaluate the applicability of GPS data for real-time traffic information collection especially after SA removal. Two major results have been reported. One is the GPS data availability and/or useful data point density for travel time estimation using Circle-X algorithm. 87.23% of data points can be mobilized after SA whereas only 29.94% of data was useful in calculating travel time. The other is the possible reduction of the buffer size that is used for screening the points of all GPS into useful and useless data, respectively. With these outcomes, it is safely expected that the regular GPS alone can provide the data points for real-time travel time estimation instead of the more expensive DGPS system.

  • PDF

Frequency analysis of GPS data for structural health monitoring observations

  • Pehlivan, Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.185-193
    • /
    • 2018
  • In this study, low- and high-frequency structure behaviors were identified and a systematic analysis procedure was proposed using noisy GPS data from a 165-m-high tower in ${\dot{I}}stanbul$, Turkey. The raw GPS data contained long- and short-periodic position changes and noisy signals at different frequencies. To extract the significant results from this complex dataset, the general structure and components of the GPS signal were modeled and analyzed in the time and frequency domains. Uncontrolled jumps and deviations involving the signal in the time domain were pre-filtered. Then, the signal was converted to the frequency domain after applying low- and high-pass filters, and the frequency and periodic component values were calculated. The spectrum of the tower motion obtained from the filtered GPS data had dominant peaks at a low frequency of $1.15572{\times}10-4Hz$ and a high frequency of 0.16624 Hz, consistent with two equivalent GPS datasets. Then, the signal was reconstructed using inverse Fourier transform with the dominant low frequency values to obtain filtered and interpretable clean signals. With the proposed sequence, processing of noisy data collected from the GPS receivers mounted very close to the structure is effective in revealing the basic behaviors and features of buildings.

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements

  • Kang, Dae-Eun;Park, Sang-Young;Son, Jihae
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.

A Stay Detection Algorithm Using GPS Trajectory and Points of Interest Data

  • Eunchong Koh;Changhoon Lyu;Goya Choi;Kye-Dong Jung;Soonchul Kwon;Chigon Hwang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.176-184
    • /
    • 2023
  • Points of interest (POIs) are widely used in tourism recommendations and to provide information about areas of interest. Currently, situation judgement using POI and GPS data is mainly rule-based. However, this approach has the limitation that inferences can only be made using predefined POI information. In this study, we propose an algorithm that uses POI data, GPS data, and schedule information to calculate the current speed, location, schedule matching, movement trajectory, and POI coverage, and uses machine learning to determine whether to stay or go. Based on the input data, the clustered information is labelled by k-means algorithm as unsupervised learning. This result is trained as the input vector of the SVM model to calculate the probability of moving and staying. Therefore, in this study, we implemented an algorithm that can adjust the schedule using the travel schedule, POI data, and GPS information. The results show that the algorithm does not rely on predefined information, but can make judgements using GPS data and POI data in real time, which is more flexible and reliable than traditional rule-based approaches. Therefore, this study can optimize tourism scheduling. Therefore, the stay detection algorithm using GPS movement trajectories and POIs developed in this study provides important information for tourism schedule planning and is expected to provide much value for tourism services.

The Development of Driving Algorithm for an Unmanned Vehicle with Multiple-GPS's (다중 GPS를 이용한 무인자동차의 주행 알고리즘 개발)

  • Moon, Hee-Chang;Son, Young-Jin;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.27-35
    • /
    • 2008
  • A navigation system is one of the important components of an unmanned ground vehicle (UGV). A GPS receiver collects data signals transmitted by (Earth orbiting) satellites. However, these data signals may contain many errors resulting misinformation and depending on one's position (environment), reception may be impossible. The proposed self-driven algorithm uses three low-cost GPS in order to minimize errors of existing inexpensive single GPS's driving algorithm. By using reliable final data, which is analyzed and combined from each of three GPS's received data signals, gathering a vehicle's steering performance information and its current pin-point position is improved even with error containing signals or from a place where signal gathering is impossible. The purpose of this thesis is to explain navigation system algorithm using multiple GPS and compass sensor and prove the algorithm through experiments.

Development of Reference Epoch Adjustment Model for Correction of GPS Precise Point Positioning Results (GPS 정밀단독측위 성과의 보정을 위한 기준시점 조정모델 개발)

  • Sung, Woo-Jin;Yun, Hong-Sik;Hwang, Jin-Sang;Cho, Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • In this study, the epoch adjustment model was developed to correct GPS precise point positioning result to be suitable for the current geodetic datum of Korea which is tied at past epoch statically. The model is based on the formula describing crustal movements, and the formula is composed of several parameters. To determine the parameters, the data gathered at 14 permanent GPS stations for 10 years, from 2000 to 2011, were processed using GIPSY-OASIS II. It was possible to determine the position of permanent GPS stations with an error range of 16mm and the position of check points with an error range of 12mm by appling the model to GPS precise point positioning result. It is considered that more precise model could be calculated by using GPS data of more permanent GPS stations.

A Study on Estimating Method of Vehicle Fuel Consumption Using GPS Data (GPS 데이터를 이용한 차량의 연료소모량 연산법 연구)

  • Ko, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.949-956
    • /
    • 2020
  • It's important to measure fuel consumption of vehicles. It's possible to monitor green house gas from vehicles for various traffic conditions with the measured data. It's effective to eco-drive for drivers with fuel consumption data also. There's a display of fuel consumption in the modern vehicles, but it's not useful to get the data from the display. An estimating method for fuel consumption of a vehicle is suggested in the study. It's a simple but an effective method using GPS data. The GPS data(speed, acceleration, road slope) and vehicle data(weight, frontal area, model year, certified fuel economy) is necessary to estimate the fuel consumption for the method. It calculates driving resistance force to estimate engine power. Then it estimates the necessary fuel consumption to maintain the engine power with fuel-power conversion factor. The conversion factor is corrected with certified fuel economy, model year and rated power. The precision of the methods is checked with road test data. The test driving data was measured with GPS and OBD. The error of the estimated fuel consumption for the measured one is about 1.8%. But the error is large for the 1000 and 100 data number from the total data number of about 10,000. The error is from the larger change range of the GPS data than the one of the measured fuel consumption data. But the proposed estimating method is useful to percept the fuel consumption change for better fuel economy with simple gadget like smart phone or other GPS instruments.

Near-real-time Ionosphere Modeling Based on Regional GPS Data

  • Park, Kwan-Dong;Hwang, Yoola;Park, Pil-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.537-539
    • /
    • 2003
  • We present a GPS-derived regional ionosphere model, which estimates Total Electron Content (TEC) in rectangular grids on the spherical shell over Korea. The GPS data from nine GPS stations were used. The pseudorange data were phase-leveled by a linear combination of pseudoranges and carrier phases. During a quiet day of solar activity, the regional ionosphere map indicated 30-45 Total Electron Content Unit (TECU) at the peak of the diurnal variation. In comparison with the Global Ionosphere Map of the Center for Orbit Determination in Europe, RMS differences were at the level of 4-5 TECU for five days.

  • PDF