• Title/Summary/Keyword: GPR43

Search Result 18, Processing Time 0.03 seconds

Study on the Lipolytic Function of GPR43 and Its Reduced Expression by DHA

  • Sun, Chao;Hou, Zengmiao;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.576-583
    • /
    • 2009
  • G protein-coupled receptor 43 (GPR43) is a newly-discovered short-chain free fatty acid receptor and its functions remain to be defined. The objective of this study was to investigate the function of GPR43 on lipolysis. We successfully cloned the GPR43 gene from the pig (EU122439), and measured the level of GPR43 mRNA in different tissues and primary pig adipocytes. The expression level of GPR43 mRNA was higher in adipose tissue and increased gradually with adipocyte differentiation. Then we examined GPR43 mRNA level in different types, growth-stages and various regions of adipose tissue of pigs. The results showed that the expression level of GPR43 mRNA was significantly higher in adipose tissue of obese pigs than in lean pigs, and the expression level also gradually increased as age increased. We further found that the abundance of GPR43 mRNA level increased more in subcutaneous fat than visceral fat. Thereafter, we studied the correlation between GPR43 and lipid metabolism-related genes in adipose tissue and primary pig adipocytes. GPR43 gene had significant negative correlation with hormone-sensitive lipase gene (HSL, r = -0.881, p<0.01) and triacylglycerol hydrolase gene (TGH, r = -0.848, p<0.01) in adipose tissue, and had positive correlation with peroxisome proliferator-activated receptor $\gamma$ gene ($PPAR_{\gamma}$, r = 0.809, p<0.01) and lipoprotein lipase gene (LPL, r = 0.847, p<0.01) in adipocytes. In addition, we fed different concentrations of docosahexaenoic acid (DHA) to mice, and analyzed expression level changes of GPR43, HSL and TGH in adipose. The results showed that DHA down-regulated GPR43 and up-regulated HSL and TGH mRNA levels; GPR43 also had significant negative correlation with HSL (low: r = -0.762, p<0.01; high: r = -0.838, p<0.01) and TGH (low: r = -0.736, p<0.01; high: r = -0.586, p<0.01). Our results suggested that GPR43 is a potential factor which regulates lipolysis in adipose tissue, and DHA as a receptor of GPR43 might promote lipolysis through down-regulating the expression of GPR43 mRNA.

The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA

  • Park, Bi-Oh;Kim, Seong Heon;Kim, Jong Hwan;Kim, Seon-Young;Park, Byoung Chul;Han, Sang-Bae;Park, Sung Goo;Kim, Jeong-Hoon;Kim, Sunhong
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.458-467
    • /
    • 2021
  • GPR43 (also known as FFAR2 or FFA2) is a G-protein-coupled receptor primarily expressed in immune cells, enteroendocrine cells and adipocytes that recognizes short-chain fatty acids, such as acetate, propionate, and butyrate, likely to be implicated in innate immunity and host energy homeostasis. Activated GPR43 suppresses the cAMP level and induces Ca2+ flux via coupling to Gαi and Gαq families, respectively. Additionally, GPR43 is reported to facilitate phosphorylation of ERK through G-protein-dependent pathways and interacts with β-arrestin 2 to inhibit NF-κB signaling. However, other G-protein-dependent and independent signaling pathways involving GPR43 remain to be established. Here, we have demonstrated that GPR43 augments Rho GTPase signaling. Acetate and a synthetic agonist effectively activated RhoA and stabilized YAP/TAZ transcriptional coactivators through interactions of GPR43 with Gαq/11 and Gα12/13. Acetate-induced nuclear accumulation of YAP was blocked by a GPR43-specific inverse agonist. The target genes induced by YAP/TAZ were further regulated by GPR43. Moreover, in THP-1-derived M1-like macrophage cells, the Rho-YAP/TAZ pathway was activated by acetate and a synthetic agonist. Our collective findings suggest that GPR43 acts as a mediator of the Rho-YAP/TAZ pathway.

Perspectives on the therapeutic potential of short-chain fatty acid receptors

  • Kim, Sunhong;Kim, Jeong-Hoon;Park, Bi Oh;Kwak, Young Shin
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.173-178
    • /
    • 2014
  • There is rapidly growing interest in the human microbiome because of its implication in metabolic disorders and inflammatory diseases. Consequently, understanding the biology of short chain fatty acids and their receptors has become very important for identifying novel therapeutic avenues. GPR41 and GPR43 have been recognized as the cognate receptors for SCFAs and their roles in metabolism and inflammation have drawn much attention in recent years. GPR43 is highly expressed on immune cells and has been suggested to play a role in inflammatory diseases such as inflammatory bowel disease. Both GPR41 and GPR43 have been implicated in diabetes and obesity via the regulation of adipose tissue and gastrointestinal hormones. So far, many studies have provided contradictory results, and therefore further research is required to validate these receptors as drug targets. We will also discuss the synthetic modulators of GPR41 and GPR43 that are critical to understanding the functions of these receptors.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

Carvacrol improves blood lipid and glucose in rats with type 2 diabetes mellitus by regulating short-chain fatty acids and the GPR41/43 pathway

  • Yan Sun;Hai Qu;Xiaohong Niu;Ting Li;Lijuan Wang;Hairui Peng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia and dyslipidemia. Carvacrol (CAR) has demonstrated the potential to mitigate dyslipidemia. This study aims to investigate whether CAR can modulate blood glucose and lipid levels in a T2DM rat model by regulating short-chain fatty acids (SCFAs) and the GPR41/43 pathway. The T2DM rat model was induced by a high-fat diet combined with low-dose streptozocin injection and treated with oral CAR and/or mixed antibiotics. Fasting blood glucose, oral glucose tolerance, and insulin tolerance tests were assessed. Serum lipid parameters, hepatic and renal function indicators, tissue morphology, and SCFAs were measured. In vitro, high glucose (HG)-induced IEC-6 cells were treated with CAR, and optimal CAR concentration was determined. HG-induced IEC-6 cells were treated with SCFAs or/and GPR41/43 agonists. CAR significantly reduced blood lipid and glucose levels, improved tissue damage, and increased SCFA levels in feces and GPR41/43 expression in colonic tissues of T2DM rats. CAR also attenuated HG-induced apoptosis of IEC-6 cells and enhanced GPR41/43 expression. Overall, these findings suggest that CAR alleviates blood lipid and glucose abnormalities in T2DM rats by modulating SCFAs and the GPR41/43 pathway.

Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Rashidi, Shima;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.489-502
    • /
    • 2022
  • In this study, a Gaussian process regression (GPR) model as well as six GPR-based metaheuristic optimization models, including GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, and GPR-SSO, were developed to predict fly-rock distance in the blasting operation of open pit mines. These models included GPR-SCA, GPR-SSO, GPR-MVO, and GPR. In the models that were obtained from the Soungun copper mine in Iran, a total of 300 datasets were used. These datasets included six input parameters and one output parameter (fly-rock). In order to conduct the assessment of the prediction outcomes, many statistical evaluation indices were used. In the end, it was determined that the performance prediction of the ML models to predict the fly-rock from high to low is GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, GPR-SSO, and GPR with ranking scores of 66, 60, 54, 46, 43, 38, and 30 (for 5-fold method), respectively. These scores correspond in conclusion, the GPR-PSO model generated the most accurate findings, hence it was suggested that this model be used to forecast the fly-rock. In addition, the mutual information test, also known as MIT, was used in order to investigate the influence that each input parameter had on the fly-rock. In the end, it was determined that the stemming (T) parameter was the most effective of all the parameters on the fly-rock.

Oleoylethanolamide Exhibits GPR119-Dependent Inhibition of Osteoclast Function and GPR119-Independent Promotion of Osteoclast Apoptosis

  • Kim, Hyun-Ju;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.340-349
    • /
    • 2020
  • Oleoylethanolamide (OEA), a bioactive lipid in bone, is known as an endogenous ligand for G protein-coupled receptor 119 (GPR119). Here, we explored the effects of OEA on osteoclast differentiation, function, and survival. While OEA inhibits osteoclast resorptive function by disrupting actin cytoskeleton, it does not affect receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. OEA attenuates osteoclast spreading, blocks actin ring formation, and eventually impairs bone resorption. Mechanistically, OEA inhibits Rac activation in response to macrophage colony-stimulating factor (M-CSF), but not RANKL. Furthermore, the OEA-mediated cytoskeletal disorganization is abrogated by GPR119 knockdown using small hairpin RNA (shRNA), indicating that GPR119 is pivotal for osteoclast cytoskeletal organization. In addition, OEA induces apoptosis in both control and GPR119 shRNA-transduced osteoclasts, suggesting that GPR119 is not required for osteoclast apoptosis. Collectively, our findings reveal that OEA has inhibitory effects on osteoclast function and survival of mature osteoclasts via GPR119-dependent and GPR119-independent pathways, respectively.

A Study of Disposition of Archaeological Remains in Wolseong Fortress of Gyeongju : Using Ground Penetration Radar(GPR) (GPR탐사를 통해 본 경주 월성의 유적 분포 현황 연구)

  • Oh, Hyun Dok;Shin, Jong Woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.306-333
    • /
    • 2010
  • Previous studies on Wolseong fortress have focused on capital system of Silla Dynasty and on the recreation of Wolseong fortress due to the excavations in and around Wolseong moat. Since the report on the Geographical Survey of Wolseong fortress was published and GPR survey in Wolseong fortress was executed as a trial test in 2004, the academic interest in the site has now expanded to the inside of the fortress. From such context, the preliminary research on the fortress including geophysical survey had been commenced. GPR survey had been conducted for a year from March, 2007. The principal purpose of the recent 3D GPR survey was to provide visualization of subsurface images of the entire Wolseong fortress area. In order to obtain 3D GPR data, dense profile lines were laid in grid-form. The total area surveyed was $112,535m^2$. Depth slice was applied to analyse each level to examine how the layers of the remains had changed and overlapped over time. In addition, slice overlay analysis methodology was used to gather reflects of each depth on a single map. Isolated surface visualization, which is one of 3D analysis methods, was also employed to gain more in-depth understanding and more accurate interpretations of the remain The GPR survey has confirmed that there are building sites whose archaeological features can be classified into 14 different groups. Three interesting areas with huge public building arrangement have been found in Zone 2 in the far west, Zone 9 in the middle, and Zone 14 in the far east. It is recognized that such areas must had been used for important public functions. This research has displayed that 3D GPR survey can be effective for a vast area of archaeological remains and that slice overlay images can provide clearer image with high contrast for objects and remains buried the site.

Chromium acetate stimulates adipogenesis through regulation of gene expression and phosphorylation of adenosine monophosphate-activated protein kinase in bovine intramuscular or subcutaneous adipocytes

  • Kim, Jongkyoo;Chung, Kiyong;Johnson, Bradley J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.651-661
    • /
    • 2020
  • Objective: We hypothesized that Cr source can alter adipogenic-related transcriptional regulations and cell signaling. Therefore, the objective of the study was to evaluate the biological effects of chromium acetate (CrAc) on bovine intramuscular (IM) and subcutaneous (SC) adipose cells. Methods: Bovine preadipocytes isolated from two different adipose tissue depots; IM and SC were used to evaluate the effect of CrAc treatment during differentiation on adipogenic gene expression. Adipocytes were incubated with various doses of CrAc: 0 (differentiation media only, control), 0.1, 1, and 10 μM. Cells were harvested and then analyzed by real-time quantitative polymerase chain reaction in order to measure the quantity of adenosine monophosphate-activated protein kinase-α (AMPK-α), CCAAT enhancer binding protein-β (C/EBPβ), G protein-coupled receptor 41 (GPR41), GPR43, peroxisome proliferator-activated receptor-γ (PPARγ), and stearoyl CoA desaturase (SCD) mRNA relative to ribosomal protein subunit 9 (RPS9). The ratio of phosphorylated-AMPK (pAMPK) to AMPK was determined using a western blot technique in order to determine changing concentration. Results: The high dose (10 μM) of CrAc increased C/EBPβ, in both IM (p = 0.02) and SC (p = 0.02). Expression of PPARγ was upregulated by 10 μM of CrAc in IM but not in SC. Expression of SCD was also increased in both IM and SC with 10 μM of CrAc treatment. Addition of CrAc did not alter gene expression of glucose transporter 4, GPR41, or GPR43 in both IM and SC adipocytes. Addition of CrAc, resulted in a decreased pAMPKα to AMPKα ration (p<0.01) in IM. Conclusion: These data may indicate that Cr source may influence lipid filling in IM adipocytes via inhibitory action of AMPK phosphorylation and upregulating expression of adipogenic genes.

Use of Cellulose and Recent Research into Butyrate (섬유소의 이용과 butyrate의 최근 연구)

  • Yeo, Tae Jong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1571-1586
    • /
    • 2012
  • On earth, there are about 5,400 kinds of mammals, of which about 1,000 kinds are herbivores. Among herbivores, about 250 kinds are known to be ruminants. As for cattle and sheep, which are ruminants, fermentation takes places mainly in their rumen; in contrast, for pigs and men, which are non-ruminants, fermentation takes place mainly in their caecum, colon, and rectum. As for the kind and dominance of rumen microorganisms, Bacteroidetes account for 51% and Firmicutes for 43%. As for the dominance of the large intestine microorganisms in men, Firmicutes account for 65% and Bacteroidetes for 25%. Cell wall components are decomposed by microorganisms, and short chain fatty acids (SCFAs) are generated through fermentation; the ratio of acetate, propionate, and butyrate generate is 60:25:15. Butyrate absorbed through the primary butyrate transporter MCT1 (mono carboxylate transports-1) in the intestines activates such SCFA receptors as GPR43 and GPR41. Butyrate has a strong anti-tumorigenic function. Butyrate is characterized by the fact that it has an effect on many cancer cells, contributes to the coordination of functions in the cells, and induces cancer apoptosis. Butyrate activates caspase but inhibits the activity of HDAC (histone deacetylase), so as to induce apoptosis. In addition, it increases p53 expression, so as to induce cell cycle arrest and apoptosis. Anti-inflammation actions of SCFA include the reduction of IL-8 expression in intestinal epithelial cells, the inhibition of NO synthesis, and the restraint of the activity of NF-${\kappa}B$ (nuclear factor ${\kappa}B$), so as to suppress the occurrence of cancers caused by inflammation. Butyrate plays an important role in maintaining physiological functions of intestinal mucous membranes and is used as a cure for inflammatory bowel disease (IBD).