• Title/Summary/Keyword: GOx

Search Result 81, Processing Time 0.04 seconds

A Study on Combustion Characteristic with Chamber Pressure in Hybrid Rocket (하이브리드 로켓에서의 압력에 따른 연소특성에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Hak-Chul;Park, Seon-Woo;Park, Joon-Hyng;Han, Hee-Soo;Hwang, Jae-Woong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-246
    • /
    • 2008
  • The combustion characteristic of solid fuel with chamber pressure were experimentally studied in hybrid combustion. This paper was experimental confirmed whether solid fuel affected not only oxidizer mass flux but also chamber pressure. Poly-Ethylene(PE) was used as fuel, GOX was used as oxidizer. Chamber pressure was controled by nozzle throat diameter 6mm and 9mm. In low oxidizer mass flux, solid fuel regression rate was affected not only oxidizer mass flux but also chamber pressure. As well, the regression rate increase as chamber pressure increase with same oxidizer mass flux.

  • PDF

Secure Distributed Cryptocurrency Transaction Model Through Personal Cold Wallet (개인용 보안장치를 통한 안전한 분산형 암호 화폐 거래 모델)

  • Lee, Chang Keun;Kim, In-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.187-194
    • /
    • 2019
  • Ever since the world's largest Bitcoin Echange, (Mt. Gox), was closed in March 2014 due to the series of hacking, still many other Exchages incl. recent Coinale in Korea have been attacked. Those hacking attempts never stopped and have caused significant threats to the overall industry of Crypto Currency and resulted in the loss of individual investors' asset. The DEX (Decentralized Exchange) has been proposed as a solution to fix the security problem at the Exchange, but still it is far away to resolve all issues. Therefore, this paper firstly analyzes security threats against existing Crypto Currency Exchanges and secondly derives security requirements for them. To do that it proposes a secure and distributed Crypto Currency Transaction Model through Personal Security devices as a solution. The paper also proves this new attempt by demonstrating its unique modelling; ultimately by adopting this modeling into Crypto Exchange is to avoid potential security threats.

Preliminary Experimental Results of Thrust Control for Hybrid Rocket (하이브리드 로켓의 추력 제어 방법에 대한 예비 실험 결과)

  • Lee, Young-Woo;Lee, Min-Jae;Lee, Jong-Lyul;Jung, Sung-Chul;Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.237-240
    • /
    • 2007
  • To control Thrust of propulsion system, we built the 50 N level PE-COx hybrid rocket, and changed the mass flow rate of COx. From the preliminary experiential results, we could see possibility of controlling thrust of the hybrid rocket by controlling mass flow rate of COx.

  • PDF

Development of Enzyme Immobilization Method to Remove Interference by Physiological Chemicals for Implantable Glucose Sensors (이식형 혈당 센서의 생리활성 물질에 의한 방해 효과를 제거하기 위한 새로운 효소고정법 개발)

  • Chung, T.D.;Kim, H.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.72-73
    • /
    • 1998
  • A new method for enzyme immobilization has been developed to remove interference by potential interferents in body fluids. Instead of using electron mediators, we chose direct hydrogen peroxide measurement route. Extremely hydrogen peroxide-selective polymer was coated as an inner membrane to exclude interferents and then glucose oxidase(GOx) was entrapped by electropolymerization of inert monomers. There was no solvent casting step throughout the whole fabrication procedure but all membranes on Pt-Ir electrode were formed by electropolymerization. Thus, membrane thickness, quantity of enzyme loaded and can be controlled by electrochemical parameters. As a result, reproducibility of biosensor characteristics becomes remarkably improved in terms of mass production.

  • PDF

Electropolymerized Thin Bilayers of Poly-5-amino-1-naphthol and Poly-1,3-phenylendiamine for Continuous Monitoring Glucose Sensors

  • Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.291-294
    • /
    • 2003
  • A highly interferent-resistive membrane, poly-5-amino-1-naphthol (poly-5A1N), underlied beneath enzymeembedded poly-1,3-phenylendiamine (poly-m-PD) network for miniturized continuous monitoring glucose sensors. The enzyme layer was prepared from a mixed solution of glucose oxidase (GOx) and m-PD monomer by simple electrolysis. The mass change of poly-5A1N was monitored by electrochemical quartz crystal microbalance (EQCM) in situ and the corresponding thickness was measured. Successive electropolymerization of poly-5A1N and poly-m-PD create a several tens nm-thick bilayer showing excellent selectivity for $H_2O_2$ and low activity loss of immobilized enzymes.

Electrochemical Properties of Polypyrrole Nanotubules Enzyme Electrode Immobilized with Glucose Oxidase (포도당 산화효소가 고정화된 Popyrrole Nanotubules 효소전극의 전기화학적 특성)

  • 김현철;구할본;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.909-912
    • /
    • 2000
  • We synthesized polypyrrole (PPy) nanotubules by oxidative polymerization of the pyrrole monomer within the pores of a polycarbonate template. The electrochemical behavior was investigated using cyclic voltammetry. The redox potential was about -0.5 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for PPy film. It is considered as the backbone grows according to the pore wall. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. By electrochemical doping of glucose oxidase (GOx) on PPy nanotubules, an enzyme electrode has been fabricated. The kinetic parameter of biochemical reaction with glucose was evaluated. The formal Michaelis constant and maximum current calculated by computer were about 11.4 mmol $dm^3$ and 170.85 A respectively. Obviously, an affinity for the substrate and current response of the PPy nanotubules enzyme electrode are rather good, comparing with that of PPy film.

  • PDF

Development of a 1500N-thrust Swirling-Oxidizer-Flow-Type Hybrid Rocket Engine

  • Sakurazawa, Toshiaki;Kitagawa, Koki;Hira, Ryuji;Matsuo, Yuji;Sakurai, Takashi;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.849-854
    • /
    • 2008
  • We have been developing a 1500N-thrust Swirling-Oxidizer-Flow-Type hybrid rocket engine. In order to put the engine into practical use, we conducted long duration burning experiments up to 25s to examine the influence of configuration change of fuel grain on the engine performance and designed an LOX vaporization nozzle to supply GOX for the 1500N-thrust engine. The experiment with a small hybrid rocket engine showed that combustion was stable and the engine performance was approximately constant during combustion. There was no essential problem to with increasing combustion time. The LOX vaporization nozzle designed had 30 rectangular channels with a depth of 0.5mm. During passing through the nozzle, the LOX increased in temperature and vaporized sufficiently.

  • PDF

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

Sensitive and Selective Electrochemical Glucose Biosensor Based on a Carbon Nanotube Electronic Film (탄소나노튜브 전자 필름을 이용한 고감도-고선택성 전기화학 글루코스 센서)

  • Lee, Seung-Woo;Lee, Dongwook;Seo, Byeong-Gwuan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.188-194
    • /
    • 2022
  • This work presents a non-destructive and straightforward approach to assemble a large-scale conductive electronic film made of a pre-treated single-walled carbon nanotube (SWCNT) solution. For effective electron transfer between the immobilized enzyme and SWCNT electronic film, we optimized the pre-treatment step of SWCNT with p-terphenyl-4,4"-dithiol and dithiothreitol. Glucose oxidase (GOx, a model enzyme in this study) was immobilized on the SWCNT electronic film following the positively charged polyelectrolyte layer deposition. The glucose detection was realized through effective electron transfer between the immobilized GOx and SWCNT electronic film at the negative potential value (-0.45 V vs. Ag/AgCl). The SWCNT electronic film-based glucose biosensor exhibited a sensitivity of 98 ㎂/mM·cm2. In addition, the SWCNT electronic film biosensor showed the excellent selectivity (less than 4 % change) against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, dopamine, and acetaminophen, by avoiding co-oxidation of the interfering substances at the negative potential value.

Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ

  • Ramirez-Gonzalez, Daniel;Cruz-Rivera, Jose de J.;Tiznado, Hugo;Rodriguez, Angel G.;Guillen-Escamilla, Ivan;Zamudio-Ojeda, Adalberto
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In this work, we report the use of caffeine as an alternative source of nitrogen to successfully dope graphene (quaternary 400.6 eV and pyridinic at 398 eV according XPS), as well as the growth of silver nanowires (in-situ) in the surface of nitrogen doped graphene (NG) sheets. We used the improved graphene oxide method (IGO), chemical reduction of graphene oxide (GOx), and impregnation with caffeine as source of nitrogen for doping and subsequently, silver nanowires (NW) grow in the surface by the reduction of silver salts in the presence of NG, achieving a numerous of growth of NW in the graphene sheets. As supporting experimental evidence, the samples were analyzed using conventional characterization techniques: SEM-EDX, XRD, FT-IR, micro RAMAN, TEM, and XPS.