Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.1.025

Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ  

Ramirez-Gonzalez, Daniel (Posgrado Fis. Mat. CU Valles, Universidad de Guadalajara)
Cruz-Rivera, Jose de J. (Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi)
Tiznado, Hugo (CNyN Universidad Nacional Autonoma de Mexico)
Rodriguez, Angel G. (CIACYT-CARIEM, Universidad Autonoma de San Luis Potosi)
Guillen-Escamilla, Ivan (Departamento de Ciencias Naturales y Exactas, CU Valles, Universidad de Guadalajara)
Zamudio-Ojeda, Adalberto (Departamento de Fisica, CUCEI, Universidad de Guadalajara)
Publication Information
Advances in nano research / v.9, no.1, 2020 , pp. 25-32 More about this Journal
Abstract
In this work, we report the use of caffeine as an alternative source of nitrogen to successfully dope graphene (quaternary 400.6 eV and pyridinic at 398 eV according XPS), as well as the growth of silver nanowires (in-situ) in the surface of nitrogen doped graphene (NG) sheets. We used the improved graphene oxide method (IGO), chemical reduction of graphene oxide (GOx), and impregnation with caffeine as source of nitrogen for doping and subsequently, silver nanowires (NW) grow in the surface by the reduction of silver salts in the presence of NG, achieving a numerous of growth of NW in the graphene sheets. As supporting experimental evidence, the samples were analyzed using conventional characterization techniques: SEM-EDX, XRD, FT-IR, micro RAMAN, TEM, and XPS.
Keywords
caffeine; nitrogen-doping; graphene; nanowires; functionalization; pyridinic; monolayer; synthesis; carbon nanostructures; nanomaterials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lv, R., Li, Q., Botello-Mendez, A.R., Hayashi, T., Wang, B., Berkdemir, A., Hao, Q., Elias, A.L., Cruz-Silva, R., Gutierrez, H.R., Kim, Y. A., Muramatsu, H., Zhu, J., Endo, M., Terrones, H., Charlier, J.-C., Pan, M. and Terrones, M. (2012), "Nitrogendoped graphene: beyond single substitution and enhanced molecular sensing", Scientific Reports, 2, 586. https://doi.org/10.1038/srep00586   DOI
2 Martin, T.P., Heinebrodt, M., Naher, U., Gohlich, H., Lange, T. and Schaber, H. (1992), "Fullerenes doped with metal halides", Int. J. Modern Phys. B, 6(23n24), 3871-3877. https://doi.org/10.1142/s021797929200195x   DOI
3 Marcano, D., Kosynkin, D. and Berlin, J. (2010), "Improved synthesis of graphene oxide", Acs, 4(8), 4806-4814. https://doi.org/10.1021/nn1006368
4 Nair, A.K., Elizabeth, I., Gopukumar, S., Thomas, S., Kala, M.S. and Kalarikkal, N. (2018), "Nitrogen doped graphene-Silver nanowire hybrids: An excellent anode material for lithium ion batteries", Appl. Surf. Sci., 428, 1119-1129. https://doi.org/10.1016/j.apsusc.2017.09.214   DOI
5 Ning, G., Fan, Z., Wang, G., Gao, J., Qian,W. and Wei, F. (2011), "Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes", Chem. Commun., 47(21), 5976. https://doi.org/10.1039/C1CC11159K   DOI
6 Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P. and Geim, A.K. (2007), "Room-temperature quantum Hall effect in graphene", Science, 315(5817), 1379. https://doi.org/10.1126/science.1137201   DOI
7 Pearton, S. (2010), "Doped nanostructures.", Nanoscale, 2(7), 1057. https://doi.org/10.1039/c005273f   DOI
8 Podila, R., Chacon-Torres, J., Spear, J.T., Pichler, T., Ayala, P. and Rao, A.M. (2012), "Spectroscopic investigation of nitrogen doped graphene", Appl. Phys. Lett., 101, 123108. https://doi.org/10.1063/1.4752736   DOI
9 Pop, E., Varshney, V. and Roy, A.K. (2012), "Thermal properties of graphene: Fundamentals and applications", MRS Bulletin, 37(12), 1273-1281. https://doi.org/10.1557/mrs.2012.203   DOI
10 Rao, C.N.R. and Voggu, R. (2010), "Charge-transfer with graphene and nanotubes", Mater. Today, 13(9), 34-40. https://doi.org/10.1016/S1369-7021(10)70163-2   DOI
11 Castro, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009), "The electronic properties of graphene", Rev. Modern Phys., 81(1), 109-162. https://doi.org/10.1103/RevModPhys.81.109   DOI
12 Audiffred, M., Elias, A.L., Gutierrez, H.R., Lopez-Urias, F., Terrones, H., Merino, G. and Terrones, M. (2013), "Nitrogen-silicon heterodoping of carbon nanotubes", J. Phys. Chem. C, 117(16), 8481-8490. https://doi.org/10.1021/jp312427z   DOI
13 Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008), "Superior thermal conductivity of single-layer graphene", Nano Lett., 8, 902-907. https://doi.org/10.1021/nl0731872   DOI
14 Bolotin, K.I., Ghahari, F., Shulman, M.D., Stormer, H.L. and Kim, P. (2009), "Observation of the fractional quantum Hall effect in graphene", Nature, 462(7270), 196-199. https://doi.org/10.1038/nature08582   DOI
15 Caswell, K.K., Bender, C.M. and Murphy, C.J. (2003), "Seedless, surfactantless wet chemical synthesis of silver nanowires", Nano Lett., 3(5), 667-669. https://doi.org/10.1021/nl0341178   DOI
16 Filippo, F., Domanov, O., Ayala, P. and Pichler, T. (2017), "Synthesis of Nitrogen Doped Single Walled Carbon Nanotubes with Caffeine", Physica Status Solidi (B) Basic Research, 254(11), 1700364. https://doi.org/10.1002/pssb.201700364   DOI
17 Geim, A.K. and Novoselov, K.S. (2007), "The rise of graphene", Nature Mater., 6(3), 11-19. https://doi.org/10.1142/9789814287005_0002   DOI
18 Sadeghi, M.M., Pettes, M.T. and Shi, L. (2012), "Thermal transport in graphene", Solid State Commun., 152(15), 1321-1330. https://doi.org/10.1016/j.ssc.2012.04.022   DOI
19 Rao, C.N.R., Biswas, K.S., Subrahmanyam, S. and Govindaraj, A. (2009), "Graphene, the new nanocarbon", J. Mater. Chem., 19(17), 2457. https://doi.org/10.1039/b815239j   DOI
20 Rao, C.N.R., Gopalakrishnan, K. and Govindaraj, A. (2014), "Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements", Nano Today, 9(3), 324-343. https://doi.org/10.1016/j.nantod.2014.04.010   DOI
21 Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2007), "Detection of individual gas molecules adsorbed on graphene", Nature Mater., 6(9), 652-655. https://doi.org/10.1038/nmat1967   DOI
22 Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A. and Lin, Y. (2010), "Nitrogen-doped graphene and its electrochemical applications", J. Mater. Chem., 20(35), 7491. https://doi.org/10.1039/C0JM00782J   DOI
23 Jiang, B., Song, S., Wang, J., Xie, Y., Chu, W., Li, H., Xu, H., Tian, C. and Fu, H. (2014), "Nitrogen-doped graphene supported Pd@ PdO core-shell clusters for CC coupling reactions", Nano Res., 7(9), 1280-1290. https://doi.org/10.1007/s12274-014-0492-1   DOI
24 Sheng, Z.-H., Shao, L., Chen, J.-J., Bao, W.-J., Wang, F.-B. and Xia, X.-H. (2011), "Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis", ACS Nano, 5(6), 4350-4358. https://doi.org/10.1021/nn103584t   DOI
25 Shin, H.J., Kim, K.K., Benayd, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y. and Lee, Y.H. (2009), "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance", Adv. Funct. Mater., 19(12), 1987-1992. https://doi.org/10.1002/adfm.200900167   DOI
26 Su, Q., Pang, S., Alijani, V., Li, C., Feng, X. and Mullen, K. (2009), "Composites of graphene with large aromatic molecules", Adv. Mater., 21(31), 3191-3195. https://doi.org/10.1002/adma.200803808   DOI
27 Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R., Sham, T.K., Sun, X., Ye, S. and Knights, S. (2011), "Nitrogen doping effects on the structure of graphene", Appl. Surf. Sci., 257(21), 9193-9198. https://doi.org/10.1016/j.apsusc.2011.05.131   DOI
28 Ji, D., Wang, Y., Chen, S., Zhang, Y., Li, L., Ding, W. and Wei, Z. (2018), "Nitrogen-doped graphene wrapped around silver nanowires for enhanced catalysis in oxygen reduction reaction", J. Solid State Electrochem., 22(7), 2287-2296. https://doi.org/10.1007/s10008-018-3914-2   DOI
29 Jo, G., Sanetuntikul, J. and Shanmugam, S. (2015), "Boron and phosphorous-doped graphene as a metal-free electrocatalyst for the oxygen reduction reaction in alkaline medium", RSC Adv., 5(66), 53637-53643. https://doi.org/10.1039/C5RA06952A   DOI
30 Kane, C.L. and Mele, E.J. (2005), "Quantum spin Hall effect in graphene", Phys. Rev. Lett., 95(22), 22-25. https://doi.org/10.1103/PhysRevLett.95.226801
31 Kong, L., Bjelkevig, C., Gaddam, S., Zhou, M., Lee, Y.H., Han, G.H., Jeong, H.K., Wu, N., Zhang, Z., Xiao, J., Dowben, P.A. and Kelberg, J.A. (2010), "Graphene/substrate charge transfer characterized by inverse photoelectron spectroscopy", J. Phys. Chem. C, 114(49), 21618-21624. https://doi.org/10.1021/jp108616h   DOI
32 Lazar, P., Karlicky, F., Jurecka, P., Kocman, M., Otyepkova, E., Safarova, K. and Otyepka, M. (2013), "Adsorption of Small Organic Molecules on Graphene", J. Am. Chem. Soc., 135(16), 6372-6377. https://doi.org/10.1021/ja403162r   DOI
33 Vinayan, B.P., Sethupathi, K. and Ramaprabhu, S. (2013), "Facile synthesis of triangular shaped palladium nanoparticles decorated nitrogen doped graphene and their catalytic study for renewable energy applications", Int. J. Hydrogen Energy, 38(5), 2240-2250. https://doi.org/10.1016/j.ijhydene.2012.11.091   DOI
34 Sun, L., Wang, L., Tian, C., Tan, T., Xie, Y., Shi, K., Li, M. and Fu, H. (2012), "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage", RSC Advances, 2, 4498-4506. https://doi.org/10.1039/C2RA01367C   DOI
35 Terrones, M., Filho, A.G. and Rao, A.M. (2008), "Doped Carbon Nanotubes: Synthesis, Characterization and Applications", In: Carbon Nanotubes, pp. 531-566, Springer, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-540-72865-8_17
36 Tison, Y., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., Joucken, F., Sharma, D., Henrad, L., Amara, H., Ghedjatti, A. and Ducastelle, F. (2015), "Electronic interaction between nitrogen atoms in doped graphene", ACS Nano, 9(1), 670-678. https://doi.org/10.1021/nn506074u   DOI
37 Wang, H.B., Maiyalagan, T. and Wang, X. (2012), "Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications", Acs Catalysis, 2(5), 781-794. https://doi.org/10.1021/cs200652y   DOI
38 Leela, A., Reddy, M., Srivastava, A., Gowda, S.R., Gullapalli, H., Debey, M. and Ajayan, P.M. (2010), "Synthesis of nitrogendoped graphene films for lithium battery application", ACS Nano, 4(11), 6337-6342. https://doi.org/10.1021/nn101926g   DOI
39 Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Wang, H., Guo, J. and Dai, H. (2009), "N-doping of graphene through electrothermal reactions with ammonia", Science, 324(5928), 768-771. https://doi.org/10.1126/science.1170335   DOI
40 Wang, Y., Shao, Y., Matson, D.W., Li, J. and Lin, Y. (2010), "Nitrogen-doped graphene and its application in electrochemical biosensing", ACS Nano, 4(4), 1790-1798. https://doi.org/10.1021/nn100315s   DOI
41 Wu, Z.S., Ren, W.C., Gao, L.B., Zhao, J.P., Chen, Z.P., Liu, B.L., Tang, D.M., Yu, B., Jiang, C.B. and Cheng, H.M. (2009), "Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation", Acs Nano, 3(2), 411-417. https://doi.org/10.1021/nn900020u   DOI
42 Wu, T., Shen, H., Sun, L., Cheng, B., Liu, B. and Shen, J. (2012), "Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid", New J. Chem., 36, 1385-1391. https://doi.org/10.1039/C2NJ40068E   DOI
43 Liu, W., Chung, C.H., Miao, C.Q., Wang, Y.J., Li, B.Y., Ruan, L.Y., Patel, K., Park, Y.J., Woo, J. and Xie, Y.H. (2010), "Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films", Thin Solid Films, 518(6), S128-S132. https://doi.org/10.1016/j.tsf.2009.10.070   DOI
44 Li, X., Wang, H., Robinson, J.T. and Sanchez, H. (2009), "Simultaneous nitrogen doping and reduction of graphene oxide", J. Am. Chem. Soc., 131(43), 15939-15944. https://doi.org/10.1021/ja907098f   DOI
45 Li, C.Z., Chueh, C.C., Ding, F., Yip, H.L., Liang, P.W., Li, X. and Jen, A.K.Y. (2013), "Doping of Fullerenes via Anion-Induced Electron Transfer and Its Implication for Surfactant Facilitated High Performance Polymer Solar Cells", Adv. Mater., 25(32), 4425-4430. https://doi.org/10.1002/adma.201300580   DOI
46 Lin, H., Chu, L., Wang, X., Yao, Z., Liu, F., Ai, Y., Zhuang, X. and Han, S. (2016), "Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction", New J. Chem., 40(7), 6022-6029. https://doi.org/10.1039/C5NJ03390J   DOI
47 Long, D., Li, W., Ling, L., Miyawaki, J., Mochida, I. and Yoon, S.H. (2010), "Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide", Langmuir, 26(20), 16096-16102. https://doi.org/10.1021/la102425a   DOI
48 Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., Shen, Z., Yu, T. and Lin, J. (2011), "Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property", J. Mater. Chem., 21(22), 8038. https://doi.org/10.1039/C1JM10845J   DOI
49 Zhu, S.E., Yuan, S. and Jenssen, G.C.A.M. (2014), "Optical transmittance of multilayer graphene", EPL, 108(1), 17007. https://doi.org/10.1209/0295-5075/108/17007   DOI
50 Zamudio, A., Elias, A.L., Rodriguez-Manzo, J.A., Lopez-Urias, F., Rodriguez-Gattorno, G., Lupo, F., Ruhle, M., Smith, D.J., Terrones, H., Diaz, D. and Terrones, M. (2006), "Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes", Small, 2(3), 346-350. https://doi.org/10.1002/smll.200500348   DOI