• Title/Summary/Keyword: GLCM

Search Result 111, Processing Time 0.025 seconds

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.

Image Analysis of Computer Aided Diagnosis using Gray Level Co-occurrence Matrix in the Ultrasonography for BPH (전립선비대증 초음파 영상에서 GLCM을 이용한 컴퓨터보조진단의 영상분석)

  • Cho, Jin-Young;Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin;Ye, Soo-Young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.191-192
    • /
    • 2015
  • 전립선비대증(Benign Prostatic Hyperplasia, BPH)은 전립선조직중에 이행구역의 결절성증식과 요도 주위의 과증식(Hyperplasia)이 특징이다. 경직장초음파(TRUS: transrectal ultrasonography)검사를 이용한 진단에 있어 정상조직과 비대되어 있는 조직의 영상 차이를 비교하고 수량화로 나타내었다, 영상분석에는 GLCM 통계적 파라미터 중에서 Autocorrelation, Cluster Prominence, Entropy, Sum average를 4개의 파라미터에서 병변 인식이 가능하였고 인식 효율은 92-98%가 나왔다. 전립선비대증식에 대한 초음파영상을 가지고 컴퓨터영상처리분석을 제안하여 진단시 참고 자료가 될 것으로 기대한다.

  • PDF

Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation (위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • Remotely sensed data provide valuable information on land monitoring due to multi-temporal observation over large areas. Especially, high resolution imagery with 0.6~1.0 m spatial resolutions contain a wealth of information and therefore are very useful for thematic mapping and monitoring change in urban areas. Recently, remote sensing technology has been successfully utilized for natural disaster monitoring such as forest fire, earthquake, and floods. In this paper, an efficient change detection method based on texture differences observed from high resolution multi-temporal data sets is proposed for mapping disaster damage and extracting damage information. It is composed of two parts: feature extraction and detection process. Timely and accurate information on disaster damage can provide an effective decision making and response related to damage.

Implementation of the System Converting Image into Music Signals based on Intentional Synesthesia (의도적인 공감각 기반 영상-음악 변환 시스템 구현)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.254-259
    • /
    • 2020
  • This paper is the implementation of the conversion system from image to music based on intentional synesthesia. The input image based on color, texture, and shape was converted into melodies, harmonies and rhythms of music, respectively. Depending on the histogram of colors, the melody can be selected and obtained probabilistically to form the melody. The texture in the image expressed harmony and minor key with 7 characteristics of GLCM, a statistical texture feature extraction method. Finally, the shape of the image was extracted from the edge image, and using Hough Transform, a frequency component analysis, the line components were detected to produce music by selecting the rhythm according to the distribution of angles.

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system (컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석)

  • Park, Byung eun;Jang, Won Seuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Estimation of Automatic Video Captioning in Real Applications using Machine Learning Techniques and Convolutional Neural Network

  • Vaishnavi, J;Narmatha, V
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.316-326
    • /
    • 2022
  • The prompt development in the field of video is the outbreak of online services which replaces the television media within a shorter period in gaining popularity. The online videos are encouraged more in use due to the captions displayed along with the scenes for better understandability. Not only entertainment media but other marketing companies and organizations are utilizing videos along with captions for their product promotions. The need for captions is enabled for its usage in many ways for hearing impaired and non-native people. Research is continued in an automatic display of the appropriate messages for the videos uploaded in shows, movies, educational videos, online classes, websites, etc. This paper focuses on two concerns namely the first part dealing with the machine learning method for preprocessing the videos into frames and resizing, the resized frames are classified into multiple actions after feature extraction. For the feature extraction statistical method, GLCM and Hu moments are used. The second part deals with the deep learning method where the CNN architecture is used to acquire the results. Finally both the results are compared to find the best accuracy where CNN proves to give top accuracy of 96.10% in classification.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

Analysis of Land Cover Characteristics with Object-Based Classification Method - Focusing on the DMZ in Inje-gun, Gangwon-do - (객체기반 분류기법을 이용한 토지피복 특성분석 - 강원도 인제군의 DMZ지역 일원을 대상으로 -)

  • Na, Hyun-Sup;Lee, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.121-135
    • /
    • 2014
  • Object-based classification methods provide a valid alternative to traditional pixel-based methods. This study reports the results of an object-based classification to examine land cover in the demilitarized zones(DMZs) of Inje-gun. We used land cover classes(7 classes for main category and 13 classes for sub-category) selected from the criteria by Korea Ministry of Environment. The average and standard deviation of the spectrum values, and homogeneity of GLCM were chosen to map land cover types in an hierarchical approach using the nearest neighborhood method. We then identified the distributional characteristics of land cover by considering 3 topographic characteristics (altitude, slope gradient, distance from the Southern Limited Line(SLL)) within the DMZs. The results showed that scale 72, shape 0.2, color 0.8, compactness 0.5 and smoothness 0.5 were the optimum weight values while scale, shape and color were most influenced parameters in image segmentation. The forests (92%) were main land cover type in the DMZs; the grassland(5%), the urban area (2%) and the forests (broadleaf forest: 44%, mixed forest: 42%, coniferous forest: 6%) also occupied mostly in land cover classes for sub-category. The results also showed that facilities and roads had higher density within 2 km from the SLL, while paddy, field and bare land were distributed largely outside 6 km from the SLL. In addition, there was apparent distinction in land cover by topographic characteristics. The forest had higher density at above altitude 600m and above slope gradient $30^{\circ}$ while agriculture, bare land and grass land were distributed mainly at below altitude 600m and below slope gradient $30^{\circ}$.

Comparison of Texture Images and Application of Template Matching for Geo-spatial Feature Analysis Based on Remote Sensing Data (원격탐사 자료 기반 지형공간 특성분석을 위한 텍스처 영상 비교와 템플레이트 정합의 적용)

  • Yoo Hee Young;Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.683-690
    • /
    • 2005
  • As remote sensing imagery with high spatial resolution (e.g. pixel resolution of 1m or less) is used widely in the specific application domains, the requirements of advanced methods for this imagery are increasing. Among many applicable methods, the texture image analysis, which was characterized by the spatial distribution of the gray levels in a neighborhood, can be regarded as one useful method. In the texture image, we compared and analyzed different results according to various directions, kernel sizes, and parameter types for the GLCM algorithm. Then, we studied spatial feature characteristics within each result image. In addition, a template matching program which can search spatial patterns using template images selected from original and texture images was also embodied and applied. Probabilities were examined on the basis of the results. These results would anticipate effective applications for detecting and analyzing specific shaped geological or other complex features using high spatial resolution imagery.