• Title/Summary/Keyword: GIS Simulation

Search Result 461, Processing Time 0.032 seconds

A Case Study of Calculating Flood Inundation Area by HEC-GeoRAS (HEC-GeoRAS 모형에 의한 침수면적산정 사례연구)

  • Kim, Chang-Soo;Lee, Young-Dai;Lee, Hwan-Woo
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2009
  • During the past few years, Korea has experienced extraordinary floods, which have caused many damages of lives and properties. Flooding caused by typhoon is the most common disastrous phenomenon of nature among all catastrophes. As the average temperature of the earth has been increasing by global warming, the possibility of typhoon is also increased by abnormal climate changes. Along with the river improvement as a part of flood control, the time of concentration has been decreased, so the pick discharge has been increased. Moreover, with the land development activities, the area of storage has been diminishing, and the damages from inundation have been continuously increasing. There were a lot of damages to farmland in 1960's, industrial and public facilities in 1970's, and a lot of sufferings from the windstorm in 1980's. In 1990's, however, the amount of damages was increased substantially. So, there is need to decrease the number of the victims and loss of properties by applying preventive measures against natural calamities. This study has employed a simulation system to calculate the depth and amounts of inundation areas to forecast and prevent from flood damage by using rainfall-runoff model. In this study, a case study method is adopted to show inundation by using rainfall-runoff model, HEC-GeoRAS and Arcview. It is hoped that, this study would be conducive to professionals and organizations working in the field of disaster management.

  • PDF

Comparative Analysis of the Sediment Transport Region based on the Lagrangian Concept (Lagrangian 개념에 의한 부유토사 확산범위 비교분석)

  • Cho, Hong-Yeon;Kim, Chang-Il;Lee, Khil-Ha
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Sediment transport model based on the Lagrangian concept considering the grain size distribution(GSD) was setup and the change of the sediment diffusion range was analysed in the condition of considering and not considering the GSD. The GSD curve is assumed as the Log-normal distribution function in order to consider the GSD with respect to the Lagrangian concept and the random numbers, i.e. sediment particles, are generated based on the distribution function. The sediment particles is assumed as the spherical type and the random numbers based on the sediment weight is converted to the sediment diameters. Sediment transport patterns are analysed by the settling simulation, in which the settling velocity is computed by the van Rijn formulae and the horizontal diffusion coefficient is used as the constant parameter. The diffusion patterns are very similar to the patterns with GSD condition. The diffusion range defined as the range including 90%, 99% sediment weight of the total sediment weight, however, is larger than without considering GSD condition in 90%-option and shorter than with considering GSD condition in 99-option, respectively. The diffusion range is defined as tile p-percentage of the cumulative sediment weight region with reference to the 50% region, 90%- option, 99%-option, respectively.

Investigating Remotely Sensed Precipitation from Different Sources and Their Nonlinear Responses in a Physically Based Hydrologic Model (다른 원격탐사 센서로 추출한 강우자료의 이질성과 이에 의한 비선형유출반응에 미치는 영향)

  • Oh, Nam-Sun;Lee, Khil-Ha;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.823-832
    • /
    • 2006
  • Precipitation is the most important component to the study of water and energy cycle in hydrology. In this study we investigate rainfall retrieval uncertainty from different sources of remotely sensed precipitation field and then probable error propagation in the simulation of hydrologic variables especially, runoff on different vegetation cover. Two remotely sensed rainfall retrievals (space-borne IR-only and ground radar rainfall) are explored and compared visually and statistically. Then, an offline Community Land Model (CLM) is forced with in situ meteorological data to simulate the amount of runoff and determine their impact on model predictions. A fundamental assumption made in this study is that CLM can adequately represent the physical land surface processes. Results show there are big differences between different sources of precipitation fields in terms of the magnitude and temporal variability. The study provides some intuitions on the uncertainty of hydrologic prediction via the interaction between the land surface and near atmosphere fluxes in the modelling approach. Eventually it will contribute to the understanding of water resources redistribution to the climate change in Korean Peninsula.

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

A Study on the Generation of DEM for Flood Inundation Simulation using NGIS Digital Topographic Maps (NGIS 수치지형도를 이용한 효율적인 홍수범람모의용 지형자료 구축에 관한 연구)

  • Kwon, Oh-Jun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.49-55
    • /
    • 2006
  • Nowadays, flood hazard maps have been generated to minimize the damages from the flooding. To generate such flood hazard maps, LiDAR data can be used as data source with higher data accuracy. LiDAR data, however, requires relatively higher cost and longer processing time. In this background, this study proposed DEM generation using NGIS digital topographic maps. For that, breaklines were processed to count directions of water flows. In addition, the river profile data, unique data source to represent real topography of the river area, were integrated to the breaklines to generate DEM. City of Kuri in Kyunggi Province was selected for this study and 1:1,000 and 1:5,000 topographic maps were integrated to process breaklines and river profile data were also linked to generate DEM. The generated DEM showed relatively lower vertical accuracy from mixing 1:1,000 and 1:5,000 topographic maps since 1:1,000 topographic maps were not available for some portion of the area. However, the DEM generated demonstrated reasonable accuracy and resolution for flood map generation as well as higher cost saving effects. On the contrary, for more efficient utilization of NGIS topographic maps, periodic map updating needs to be made including technical consideration in building breaklines and applying interpolation methods.

  • PDF

A Landscape Information System for Managing the Urban Landscape (도시경관 관리를 위한 경관정보시스템의 개발)

  • 오규식;박경호
    • Spatial Information Research
    • /
    • v.5 no.2
    • /
    • pp.161-175
    • /
    • 1997
  • In spite of intense advances in the economy and technological progress which include massive and high-rise developments, landscape resources have either been destroyed or left to deteriorate. In recent years, efforts towards landscape management have emerged in the form of legislation and policies. However, relevant computer tools have unfortunately been insufficient in the field of landscape management. In addition, although there has been much research conducted for urban landscape management, pertinent information has not been recorded or managed efficiently. Therefore, this study developed a Landscape Information System for the purpose of managing urban landscape infOlmation and analyzing visual impacts in relation to urban development projects. Main functions of the Landscape Information System consist of the following: inputting and managing the attribute data as well as graphic data, querying attributes of urban landscape, and analyzing landscape impacts of developments. A case study was conducted for downtown Seoul. Using the system, a series of visual impact analyses were implemented at major viewpoints in the area. The results have shown that valuable landscape resources could be damaged by proposed development projects. Thus, the Landscape Information System developed in this study can be used as a major tool to manage urban landscape information efficiently and as the basis for decision-making regarding landscape simulation and visual impact analysis.

  • PDF

Study on Runoff Variation by Spatial Resolution of Input GIS Data by using Distributed Rainfall-Runoff Model (분포형 강우-유출 모형의 입력자료 해상도에 따른 유출변동 연구)

  • Jung, Chung Gil;Moon, Jang Won;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.767-776
    • /
    • 2014
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Floods are one of the most deadly and damaging natural disasters known to mankind. The flood forecasting and warning system concentrates on reducing injuries, deaths, and property damage caused by floods. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall-runoff model. In this study, grid resolution depending on the topographic factor in rainfall-runoff models presents how to respond. semi-distribution of rainfall-runoff model using the model GRM simulated and calibrated rainfall-runoff in the Gamcheon and Naeseongcheon watershed. To run the GRM model, input grid data used rainfall (two event), DEM, landuse and soil. This study selected cell size of 500 m(basic), 1 km, 2 km, 5 km, 10 km and 12 km. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, runoff volume and peak discharge which simulated cell size of DEM 500 m~12 km were continuously reduced. that results showed decrease tendency. However, input grid data except for DEM have not contributed increase or decrease runoff tendency. These results showed that the more increased cell size of DEM make the more decreased slope value because of the increased horizontal distance.

A Neural Network-Based Tracking Method for the Estimation of Hazardous Gas Release Rate Using Sensor Network Data (센서네트워크 데이터를 이용하여 독성물질 누출속도를 예측하기 위한 신경망 기반의 역추적방법 연구)

  • So, Won;Shin, Dong-Il;Lee, Chang-Jun;Han, Chong-Hun;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.38-41
    • /
    • 2008
  • In this research, we propose a new method for tracking the release rate using the concentration data obtained from the sensor. We used a sensor network that has already been set surrounding the area where hazardous gas releases can occur. From the real-time sensor data, we detected and analyzed releases of harmful materials and their concentrations. Based on the results, the release rate is estimated using the neural network. This model consists of 14 input variables (sensor data, material properties, process information, meteorological conditions) and one output (release rate). The dispersion model then performs the simulation of the expected dispersion consequence by combining the sensor data, GIS data and the diagnostic result of the source term. The result of this study will improve the safety-concerns of residents living next to storage facilities containing hazardous materials by providing the enhanced emergency response plan and monitoring system for toxic gas releases.

  • PDF

Simulation of soil moisture on Youngdam Dam basin using K-DRUM (K-DRUM 모형을 이용한 용담댐 유역의 토양수분 변화 모의)

  • Hur, Young Teck;Lim, Kwang Suop;Park, Jin Hyeog;Park, Gu Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.281-281
    • /
    • 2016
  • 기후변화로 인한 기상학적 자연재해로부터 대비하고 안정적인 용수공급을 위해 유역의 다양한 수문 요소들에 대한 분석 필요성이 증가하고 있다. 계절적 강수량의 편차가 큰 우리나라는 유역 통합 물관리가 중요하며, 효율적 수자원 관리와 물안보 확보를 위해 유역내 물순환을 이해하는 것이 중요하다. 유역의 유출을 결정하는 요소들에는 강우, 증발산량, 토양 수분 및 지하수 등이 있으며, 시간적으로는 홍수와 같이 단기에 발생하는 유출과 장기적으로 발생하는 유출이 있다. 장기 유출은 단기 유출에 비해 토양내 수분량이 무시할 수 없을 정도로 영향을 미치게 되므로, 1년 이상의 장기 유출 해석을 위해서는 강우가 발생하지 않는 기간 동안의 토양 수분량 변화와 증발산 영향을 고려할 필요가 있다. K-water에서 자체 개발된 분포형 장단기유출 모델인 K-DRUM은 유역을 격자(grid)단위로 구분하고 각 셀들에 대한 매개변수는 흐름방향도, 표고분포도, 토지이용도, 토지피복도 등을 GIS처리하여 일괄 입력할 수 있도록 함으로써 매개변수 산정과정에서 문제가 되는 경험적인 요인을 제거하였다. 흐름의 구분은 얕은면 흐름, 지표하 흐름, 지하수 흐름으로 구분하여 운동파법과 선형저류법을 적용하였다. 또한 초기 토양함수 자동보정기법으로 실제의 기저유출량을 재현하여 전체적인 유출모의 정확도를 높였으며, FAO-56 Penman-Monteith법을 적용한 증발산량 산정모듈과 Sugawara et al.(1984)이 제안한 개념적 융설 및 적설모듈을 추가하였다. K-DRUM모형을 이용한 유출분석은 용담댐 시험유역을 대상으로 2013년도 1년간의 유출모의를 수행하였다. 입력자료는 용담댐 유역의 지형, 토양 및 토지특성 정보와 시단위 강우 및 기상정보(온도, 바람, 일사 등)를 활용하였다. 분석 결과, 총 관측유출량은 7,151 ㎥/s이고 총 계산유출량 $8,257m^3/s$이며, 관측유출량 대비 계산유출량은 약 115% 정도로 나타났다. 연간 총 강우량은 1303.5 mm로 유역면적 약 $930km^2$을 적용하여 유역 총 강우량을 산정하면 $14,030m^3/s$로서 관측유출량은 유역 총 강우량 대비 51%이고 계산유출량은 59% 정도로 나타났다. 즉 유역 유출율은 약 51% 수준으로 보통의 유역과 유사한 수준이다. 관측된 토양수분량과 K-DRUM 모형의 계산된 토양수분량을 비교하기 위하여 관측 토양수분량의 비율을 이용하여 비교하였다. 모의결과 토양수분은 강우에 의해 변화하며, 관측결과와 유사한 형태로 나타남을 알 수 있었다.

  • PDF

Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios (서울, 경기지역의 시나리오별 액상화 위험지도 작성을 위한 지진가속도와 LPI 상관관계 분석)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.5-12
    • /
    • 2019
  • On November 15, 2017, a unpredictable liquefaction damage was occurred at the $M_L=5.4$ Pohang earthquake and after, many researches have been conducted in Korea. In Korea, where there were no cases of earthquake damage, it has been extremely neglectable in preparing earthquake risk maps and building earthquake systems that corresponded to prevention and preparation. Since it is almost impossible to observe signs and symptoms of drought, floods, and typhoons in advance, it is very effective to predict the impacts and magnitudes of seismic events. In this study, 14,040 borehole data were collected in the metropolitan area and liquefaction evaluation was performed using the amplification factor. Based on this data, liquefaction hazard maps were prepared for ground accelerations of 0.06 g, 0.14 g, 0.22 g, and 0.30 g, including 200years return period to 4,800years return period. Also, the correlation analysis between the earthquake acceleration and LPI was carried out to draw a real-time predictable liquefaction hazard map. As a result, 707 correlation equations in every cells in GIS map were proposed. Finally, the simulation for liquefaction risk mapping against artificial earthquake was performed in the metropolitan area using the proposed correlation equations.