Browse > Article
http://dx.doi.org/10.3741/JKWRA.2010.43.11.995

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model  

Lee, Gi-Ha (Construction and Disaster Research Center, Chungnam National Univ.)
Yu, Wan-Sik (Dept. of Civil Engrg., Chungnam National Univ.)
Jang, Chang-Lae (Dept. of Civil Engrg., Chungju National Univ.)
Jung, Kwan-Sue (Dept. of Civil Engrg., Chungnam National Univ.)
Publication Information
Journal of Korea Water Resources Association / v.43, no.11, 2010 , pp. 995-1009 More about this Journal
Abstract
Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.
Keywords
soil erosion; rainfall-sediment yield-runoff model; unit stream power; spatial distribution of erosion and deposition;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Water Resources Publications, Highland Ranch. Tachikawa, Y., Nagatani, G., and Takara, K. (2004). "Develpment of stage-discharge relationship equation incorporating saturated-unsaturated flow mechanism." Annual Journal of Hydraulic Engineering, JSCE, Vol. 48, pp. 7-12. (Japanese with English abstract)   DOI
2 Tarboton, D.G., Bras, R.L., and Rodriguez-Iturbe, I. (1989). "Scaling and elevation in river networks." Water Resources Research, Vol. 25, No. 9, pp. 2037-2051.   DOI
3 Vieux, B.E. (2004). Distributed hydrologic modeling using GIS, Kluwer Academic Publishers.
4 Torri, D., Sfalanga, M., and Del Sette, M. (1987). "Splash detachment: runoff depth and soil cohesion." Catena, Vol. 14, pp. 149-155.   DOI
5 Tucker G.E., Catani F., Rinaldo A., and Bras R.L. (2001). "Statistical analysis of drainage density from digital terrain data." Geomorphology, Vol. 36, pp. 187-202.   DOI
6 Woolhiser, D.A., Smith, R.E., and Goodrich, D.E. (1990). KINEROS, a kinematic runoff and erosion model: documentation and user manual, USDA, ARS-77.
7 Yang, C.T. (1972). "Unit stream power and sediment transport." Journal of the Hydraulics Division, ASCE, Vol. 98, No. 10, pp. 1805-1826.
8 Yang, C.T. (1973). "Incipient motion and sediment transport." Journal of the Hydraulics Division, ASCE, Vol. 99, No. 10, pp. 1679-1704.
9 Lee, G., Tachikawa, Y., and Takara, K. (2009). "Interaction between topographic and process parameters due to the spatial resolution of DEMs in distributed rainfall-runoff modeling." Journal of Hydrologic Engineering, ASCE, Vol. 14, No. 10, pp. 1059-1069.   DOI
10 MacCormack, R.W. (1969). The effect of viscosity in hypervelocity impact cratering. AIAA Paper, pp. 69-354.
11 Miyazaki, T. (2006). Soil and water in water flow in soils (Second Edition), Chapter 1: The Taylor and Francis Group.
12 Nearing, M.A., Page, D.I., Simanton, J.R., and Lane, L.J. (1989). "Determining erodibility parameters from rangeland field data for a process-based erosion model." Transactions of the ASAE., Vol. 32, No. 3, pp. 919-924.   DOI
13 Morgan, R.P.C., Quinton, J.N., and Rickson, R.J. (1992). EUROSEM documentation manual, silsoe College, Silsoe, Bedford, UK.
14 Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Chisci, G., and Torri, D. (1998). "The european soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments." Earth Surface Process and Landforms Vol. 23, pp. 527-544.   DOI
15 Morris, G.L., and Fan, J. (1997). Reservoir sedimentation handbook, McGraw-Hill, New York.
16 Prosser, L.R., and Rustomji, P. (2000). "Sediment transport capacity relations for overland flow." Progress in Physical Geography, Vol. 24, No. 2, pp. 179-193.   DOI
17 Sayama (2003). Evaluation of reliability and complexity of rainfall-sediment-runoff models. Master's Thesis, Kyoto University, pp. 5-10.
18 Singh, V.P. (2001). "Kinematic wave modeling in water resources: a historical perpective." Hydrological Process, Vol. 15, pp. 671-706.   DOI
19 Sorooshian, S., and Gupta, V.K. (1995). "Model calibration, in computer models of watershed hydrology.", edited by Singh, V.P., pp. 23-68.
20 De Roo, A.P.J., Offermans, R.J.E., and Cremers, N.H.D.T. (1996b). "LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application." Hydrological Processes, Vol. 10, pp. 1119-1126.   DOI
21 Duan, Q., Sorooshian, S., and Gupta, V.K. (1994). "Optimal use of the SCE-UA global optimization method for calibrating watershed models." Journal of Hydrology, Vol. 158, pp. 265-284.   DOI
22 Downer, C.W., and Ogden, F.L. (2006). Gridded surface subsurface hydrologic analysis (GSSHA) user's manual. Coastal and Hydraulic Laboratory (CHL), Engineering Research and Development Center (ERDC), US Army Corps of Engineers, pp. 1-13.
23 Duan, Q., Gupta, V.K., and Sorooshian, S. (1993). "Shuffled complex evolution approach for effective and efficient global minimization." Journal of Optimization Theory and Applications, Vol. 76, No. 3, pp. 501-521.   DOI
24 Duan, Q., Sorooshian, S., and Gupta, V.K. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff models." Water Resources Research, Vol. 284, pp. 1015-1031.
25 Flanagan, D.C., and Nearing, M.A. (1995). USDAwater erosion prediction project hillslope profile and watershed model documentation. NSERL Report No. 10, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, Indiana.
26 Hjelmfelt, Jr.A.T. (1986). "Estimating peak runoff form field-size watersheds." Water Resources bulletin, Vol. 22, No. 2, pp. 267-274.   DOI
27 Johnson, B.E., Julien, P.Y., Molnar, D.K., and Watson, C.C. (2000). "The two dimension-upland erosion model CASC2D-SED." Journal of the AWRA, Vol. 36, No. 1, pp. 31-42.
28 Lax, P.D., and Wendroff, B. (1960). "Systems of consercation laws." Communications on Pure and Applied Mathematics, Vol. 13, pp. 217-237.   DOI
29 박상식, 이종태(2008). "토지피복도와 분류체계를 이용한 적정 지표면 조도계수의 결정에 관한 연구." 대한토목학회 정기학술대회 논문집, 대한토목학회, pp. 566-569.
30 손광익(2001a). "해외 토사유출량 산정공식의 국내적용성 검토(I)-RUSLE를 중심으로." 한국수자원학회논문집, 한국수자원학회, 제34권, 제3호, pp. 199-207.   과학기술학회마을
31 손광익(2001b). "해외 토사유출량 산정공식의 국내적용성 검토(II)-MUSLE를 중심으로." 한국수자원학회논 문집, 한국수자원학회, 제34권, 제3호, pp. 209-216.   과학기술학회마을
32 예령, 윤성완, 정세웅(2008). "대청댐 유역 토양 침식량 산정을 위한 SWAT 모델의 적용." 한국수자원학회논문집, 한국수자원학회, 제41권, 제2호, pp. 149-162.   과학기술학회마을   DOI   ScienceOn
33 유완식(2010). 매개변수의 불확실성을 고려한 강우-유사-유출량 산정에 관한 연구. 석사학위논문, 충남대학교, pp. 67-69.
34 이근상, 김유리, 예령, 이을래(2009). "GIS 기반 SWAT 모델을 이용한 동향.천천유역의 부유사량 분석." 한국지리정보학회지, 제12권, 제2호, pp. 82-98.
35 조영진(2004). 분포형 모형을 이용한 토사의 유출 및 퇴적분포 예측모형 개발. 공학석사 학위논문, 영남대학교, pp. 48-63.
36 한국수자원공사(2002). 용담댐 일원 하천유량측정 등 수문조사 보고서.
37 한국수자원공사(2003). 용담댐 일원 하천유량측정 등 수문조사 보고서.
38 한국수자원공사(2007). 용담댐 일원 수자원.환경기초 조사 보고서.
39 한국환경정책평가연구원(2009). 기후변화 대응을 위한 물환경 관리전략 및 정책방향 I.
40 행정자치부 국립방재연구소(1998). 개발에 따른 토사유 출량 산정에 관한 연구(I).
41 Bagnold, R.A. (1960). Sediment discharge and stream power, a preliminary announcement. USGS Circ. 421. Washington, DC.
42 De Roo, A.P.J., Wesseling, C.G., and Ritsems, C.J. (1996a). "LISEM: a single-event physically based hydrological and soil erosion model for drainage basins. I: Theory, input and output." Hydrological Processes, Vol. 10, pp. 1107-1117.   DOI
43 김주철, 김재한(2007). "DEM을 이용한 수로망의 형태학적 표현." 한국수자원학회논문집, 한국수자원학회, 제40권, 제4호, pp. 287-297.   과학기술학회마을   DOI
44 갈병석(2008). SWAT모형을 이용한 낙동강 유량 및 부유사량 변동 분석 연구. 석사학위논문, 부산대학교, pp. 51-77.
45 권혁현(2002). GIS를 이용한 토양손실량 산정기법에 관한 연구. 석사학위논문, 영남대학교, pp. 36-52.
46 김웅태, 윤용남, 박무종, 유철상(2001). "분포형 개념을 이용한 토사유출량 산정에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제34권, 제2호, pp. 131-140.   과학기술학회마을