DOI QR코드

DOI QR Code

Study on Runoff Variation by Spatial Resolution of Input GIS Data by using Distributed Rainfall-Runoff Model

분포형 강우-유출 모형의 입력자료 해상도에 따른 유출변동 연구

  • Jung, Chung Gil (Dept. of Civil & Environmental System Engineering, Konkuk Univ.) ;
  • Moon, Jang Won (Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Dong Ryul (Korea Institute of Civil Engineering and Building Technology)
  • 정충길 (건국대학교 사회환경시스템공학과) ;
  • 문장원 (한국건설기술연구원 수자원환경연구본부 수자원연구실) ;
  • 이동률 (한국건설기술연구원 수자원환경연구본부 수자원연구실)
  • Received : 2014.07.24
  • Accepted : 2014.08.12
  • Published : 2014.09.30

Abstract

Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Floods are one of the most deadly and damaging natural disasters known to mankind. The flood forecasting and warning system concentrates on reducing injuries, deaths, and property damage caused by floods. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall-runoff model. In this study, grid resolution depending on the topographic factor in rainfall-runoff models presents how to respond. semi-distribution of rainfall-runoff model using the model GRM simulated and calibrated rainfall-runoff in the Gamcheon and Naeseongcheon watershed. To run the GRM model, input grid data used rainfall (two event), DEM, landuse and soil. This study selected cell size of 500 m(basic), 1 km, 2 km, 5 km, 10 km and 12 km. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, runoff volume and peak discharge which simulated cell size of DEM 500 m~12 km were continuously reduced. that results showed decrease tendency. However, input grid data except for DEM have not contributed increase or decrease runoff tendency. These results showed that the more increased cell size of DEM make the more decreased slope value because of the increased horizontal distance.

최근 기후변화에 의한 기상이변이 발생하고 국지적 집중호우로 인한 홍수피해가 심각하게 증가하고 있다. 이러한 피해를 경감하기 위한 방법으로 정확한 홍수유출량 예측을 통한 홍수예경보 구축이 필요시 된다. 정확한 홍수유출량 예측을 위해 수문기상학적 요소와 특성인자들의 정확한 상호 연관성 규명과 공간적 변동성 해석은 강우-유출 모형에서 발생하는 불확실성을 감소시키는데 중요한 요소로 작용하게 된다. 본 연구에서는 정확한 홍수유출량을 산정하기 위한 강우-유출모형을 이용한 입력자료의 해상도에 따른 불확실성을 감소시키기 위해 강우격자 해상도와 지형인자 격자 해상도에 따라 강우-유출모형이 어떻게 반응하는지 분석하였다. 분포형 강우-유출 모형인 GRM 모형을 이용하여 내성천 및 감천 유역을 대상으로 이벤트를 산정하여 홍수유출 모의 및 검증을 실시하였다. GRM 모형 구성을 위한 입력자료(강우, DEM, 토지이용도, 토양도)의 해상도 격자크기는 500m 격자크기를 기본으로 각각 1 km, 2 km, 5 km, 10 km, 12 km 격자크기의 지형자료를 사용하여 유출모의를 실시하고 유출량 변화를 모의하였다. 입력자료별 모의결과로 DEM의 분석결과는 모든 시험유역에서 공통적으로 DEM의 격자크기가 증가할수록 첨두유량과 총유출량이 일정하게 감소하는 경향을 나타내고 있다. 나머지 입력자료로 토지이용 및 토양도에 격자크기에 따른 모의결과는 DEM과는 상반되게 일정한 경향성을 나타나지 않는 것으로 분석되었다. 특히 일정한 경향성이 나타나는 DEM의 분석결과는 DEM의 격자크기가 증가할수록 수평거리가 증가하여 경사도는 감소하는 특징으로 인해 나타나는 결과인 것으로 판단된다.

Keywords

References

  1. Ahn, S.J., and Yoon, S.H. (2005). "Runoff analysis using ModClark model." Journal of the Korea Water Resources Association, KWRA, Vol. 38, No. 3, pp. 245-257. https://doi.org/10.3741/JKWRA.2005.38.3.245
  2. ASCE (1997). GIS modules and distributed models of the watershed. ASCE, Virginia, USA.
  3. Bae, Y.H., Kim, B.S., and Kim, H.S. (2010). "The study on flood runoff simulation using runoff model with gauge-adjusted radar data." Journal of the Korean Wetlands Society, KWS, Vol. 12, No. 1, pp. 51-61.
  4. Cho, H. S. (2000). The determination of grid size on the distributed rainfall-runoff model. Ph. D. dissertation, Chungnam National University, Daejeon, Korea.
  5. Finnerty, D., Smith, M., Seo, D., Koren, V., and Molglen, E. (1997). "Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs." Journal of Hydrology, Vol. 203, pp. 21-38. https://doi.org/10.1016/S0022-1694(97)00083-8
  6. Johnson, D., Smith, M., Koren, V., and Finnerty, B. (1999). "Comparing mean areal precipitation estimates from NEXRAD and rain gauge networks." Journal of Hydrologic Engineering, ASCE, pp. 117-124.
  7. KICT(Korea Institute of Civil engineering and building Techonolgy). (2011). HyGIS-GRM User's Manual.
  8. Kim, B.S., Hong, S.J., and Bae, Y.H. (2009). "Simulation of distributed flood using the KMA-Radar rainfall data and rain gauge data." Proceedings of the Korea Water Resources Association Conference, KWRA, Yongpyong, pp. 1021-1026.
  9. Kim, S.J., Kwon, Y.S., Lee, K.H., and Kim, H.S. (2010). "Radar rainfall adjustment by artificial neural network and runoff analysis." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 30, No. 2B, pp. 159-167.
  10. Kim, Y.S., Kim, S.J., Jang, D.W., and Kim, H.S. (2010). "Support of flood forecasting system using radar rainfall and distributed runoff model in Sumjin River basin." Proceedings of the Korean Society of Civil Engineers Conference, KSCE, Incheon, p. 2715.
  11. Lee, G.S., Choi, Y.W., and Cho, G.S. (2006). "Suggestion of slope evaluation by DEM-based aggregation method." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 26, No. 6D, pp. 1019-1023.
  12. Maidment, R. (1993). Handbook of hydrology. McGraw Hill, Inc., New York, USA.
  13. Moon, Y.I., Choi, B.H., Ahn, J.H., and Oh, T.S. (2006). "The study of rainfall-runoff analysis according to DEM grid-size by using distributed rainfall runoff model." Proceedings of the Korea Water Resources Association Conference, KWRA, Jeju, pp. 1787-1791.
  14. Sun, S., Mein, R.G., Keenan, T.D., and Elliott, J.F. (2000). "Flood estimation using radar and raingage data." Journal of Hydrology, Vol. 239, pp. 4-18. https://doi.org/10.1016/S0022-1694(00)00350-4
  15. Vieux, B.E. (1994). Distributed hydrologic modeling using GIS. Kulwer Academic Publishers, Dordrecht, Netherlands.
  16. Vieux, B.E., and Bedient, P.B. (2004). "Assessing urban hydrologic prediction accuracy through event reconstruction." Journal of Hydrology, Vol. 299, pp. 217-236. https://doi.org/10.1016/j.jhydrol.2004.08.005
  17. Zhang, W., and Montgomery, D.R. (1994). "Digital elevation model grid size, landscape representaion, and hydrologic simulation." Water Resources Reasearch, Vol. 30, No. 4, pp. 1019-1028. https://doi.org/10.1029/93WR03553