DOI QR코드

DOI QR Code

Investigating Remotely Sensed Precipitation from Different Sources and Their Nonlinear Responses in a Physically Based Hydrologic Model

다른 원격탐사 센서로 추출한 강우자료의 이질성과 이에 의한 비선형유출반응에 미치는 영향

  • Oh, Nam-Sun (Dept. of Ocean Civil Eng., Mokpo National Maritime University) ;
  • Lee, Khil-Ha (GIS Research Institute, Kyungwon University) ;
  • Kim, Sang-Jun (Dept. of Civil Eng., Kyungwon University)
  • 오남선 (목포해양대학교 해양토목공학과) ;
  • 이길하 (경원대학교 GIS 연구소) ;
  • 김상준 (경원대학교 토목공학과)
  • Published : 2006.10.01

Abstract

Precipitation is the most important component to the study of water and energy cycle in hydrology. In this study we investigate rainfall retrieval uncertainty from different sources of remotely sensed precipitation field and then probable error propagation in the simulation of hydrologic variables especially, runoff on different vegetation cover. Two remotely sensed rainfall retrievals (space-borne IR-only and ground radar rainfall) are explored and compared visually and statistically. Then, an offline Community Land Model (CLM) is forced with in situ meteorological data to simulate the amount of runoff and determine their impact on model predictions. A fundamental assumption made in this study is that CLM can adequately represent the physical land surface processes. Results show there are big differences between different sources of precipitation fields in terms of the magnitude and temporal variability. The study provides some intuitions on the uncertainty of hydrologic prediction via the interaction between the land surface and near atmosphere fluxes in the modelling approach. Eventually it will contribute to the understanding of water resources redistribution to the climate change in Korean Peninsula.

강우는 물과 에너지 순환에서 가장 중요한 역할을 한다. 이 연구에서는 두개의 다른 원격탐사 센서를 이용하여 추출한 강우자료의 불확실성 (uncertainty)에 대하여 검토해 보았으며, 이에 의한 오차가 비선형 수치수문모형에서 수문인자(유출)를 모의할 때 어떻게 영향을 미치는가를 살펴보았다. 지상에서 관측된 강우 관측을 이용하여 WSR-88D (NEXRAD)에 의해 추출한 레이더 강우, 그리고 IR (Infrared) 밴드를 기반으로 하는 인공위성 강우관측을 비교 검토하였으며, 세 가지의 서로 다른 강우와 현장에서 측정된 기상자료를 입력 자료로 사용하여, 오프라인 CLM (Community Land Model) 수문모형으로 유출량을 모의하였다. 이 연구에서 물리적 이론을 기반으로 하는 CLM수문 모형의 매개변수는 지표면-대기의 수문반응 (land-atmosphere interaction)을 적절하게 묘사하도록 정의되었다고 가정한다. 다른 원격탐사 센서를 이용하여 추출한 강우자료는 시공간적으로 다른 양상을 보여 주며, 수치모형의 실험 결과는 강우입력의 불확실성이 수문반응의 결과에 어떻게 영향을 미치는지를 보여준다. 이 연구는 앞으로 우리나라에서 개발 및 활용가능성이 있는 레이더 강우와 인공위성 강우에 대한 사전 지식을 제공하고, 동시에 수치 수문모형을 수행할 때 수문반응의 불확실성에 대한 정보를 제공해 주며, 결국은 기후 변화에 따른 수자원의 재분배를 이해하는데 이바지할 것이다.

Keywords

References

  1. Bonan, G.B. (1996). A land surface model (LSM version 1.0) for ecological, Hydrological, and atmospheric studies: technical description and user's guide. NCAR Technical Note; NCAR/TN-417+STR, Boulder, CO
  2. Bonan, G.B., Olsen, K.W., Vertenstein, M., Levis, S., Zeng, X.B., Dai, Y.J., Dickinson, R.E., and Yang, Z.L. (2002). 'The land surface climatology of the community land model coupled to the NCAR community climate model.' Journal of Climate, Vol. 15(22), pp. 3123-3149 https://doi.org/10.1175/1520-0442(2002)015<3123:TLSCOT>2.0.CO;2
  3. Brock, F.V., Crawford, K.C., Ellot, R.L., Cupperus, G.W., Stadler, S.J., Johnson, H.J., and Elts, M.D. (1995). 'The Oklahoma Mesonet: A technical overview.' J. Atmos. Oceanic. Technol., Vol. 12(1), pp. 5-19 https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2
  4. Casati, B., Ross, G, Stephenson, B.D., (2004). 'A New Intensity-Scale Approach for the Verification of Spatial Precipitation Forecasts.' Meteorological Applications, Vol. 11(2), pp. 141-154 https://doi.org/10.1017/S1350482704001239
  5. Dai, Y.J. and Zeng, Q.C. (1997). 'A land surface model (IAP94) for climate studies formulation and validation in off-line experiments.' Advances in Atmospheric Science, Vol. 14, pp. 433-460 https://doi.org/10.1007/s00376-997-0063-4
  6. Defries, R.S., Hansen, M.C., and Townshend, J.R.C. (2000). 'Continuous fields of vegetation characteristics: a linear mixture model applied to multi-year 8 km AVHRR data.' International Journal of Remote Sensing, Vol. 21(6-7), pp. 1389-1414 https://doi.org/10.1080/014311600210236
  7. Dickinson, R.E., Henderson-Seller, A., Kennedy, P.J., and Wilson, M.F. (1986). Biosphere- Atmosphere Transfer Scheme (BATS) for the NCAR community climate model. Technical Note; NCAR/TN-275+STR, NCAR, Boulder, CO
  8. Elliot, R.L., Brock, F.V., Stone, M.L., and Harp, S.L. (1994). 'Configuration decisions for an automated weather station network' Appied. Engineering Agriculture, Vol. 10(1), pp. 45-51 https://doi.org/10.13031/2013.25826
  9. Fulton, R.A, Breidenbach, J.P., Seo, D.J., Miller, D.A., and O'bannon, T. (1998). 'The WSR-88D rainfall algorithm' Weather and forecasting, Vol. 13(2), pp. 377-395 https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
  10. Global Soil Data Task, (2000). Global soil data products CD-ROM (IGBP-DIS). International Geosphere-biosphere Programme data and Information Available Services
  11. Guo, J., Liang, X., and Leung, R.L. (2004). 'Impacts of different precipitation data sources on water budgets.' Journal of Hydrology, Vol. 298(1-4), pp. 311-334 https://doi.org/10.1016/j.jhydrol.2003.08.020
  12. King, M.D. (1999). EOS: Science Plan. NASA, pp. 13
  13. Lee, K. and Oh, N.S. (2001). 'Investigating the spatial scaling effect of the nonlinear hydrologic response to precipitation forcing in a physically based land surface model.' Water SA, Vol. 32(2), pp. 145- 154
  14. Lee, K. and Anagnostou, E.N. (2004). 'Investigation of the nonlinear hydrologic response to the precipitation in physically based land surface model.' Canadian Journal of Remote Sensing, Vol. 30(5), pp. 706-716 https://doi.org/10.5589/m04-037
  15. Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., and Merchant, J.W. (2000). 'Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data.' International Journal of Remote Sensing, Vol. 21(6-7), pp. 1303-1330 https://doi.org/10.1080/014311600210191