• Title/Summary/Keyword: GFRP 보강근

Search Result 87, Processing Time 0.026 seconds

Local Bond Stress-Slip Model of GFRP Rebars (GFRP 보강근의 부착응력-미끄럼 모델)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Glass Fiber Reinforced Polymer (GFRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of GFRP. However, there remain various aspects of GFRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between GFRP and concrete. In this study, the bond-behavior of GFRP bars in concrete is investigated via the pullout test with varying parameters: surface condition of GFRP bars and concrete compression strength. And the local bond-stress model of GFRP rabars with applying monotonc load was also derived from the present test.

  • PDF

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.

Accelerated Test Program for Durability Characteristics of GFRP Rebars (내구특성 파악을 위한 GFRP 보강근의 촉진실험 연구)

  • Kim, Hyeong-Yeol;You, Young-Jun;Park, Young-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.157-164
    • /
    • 2006
  • This paper presents the durability characteristics of commercially available CFRP rebars under various environmental conditions. Two types of GFRP rebars were tested by using an accelerated aging method. A total of 264 rebar specimens were conditioned up to 132 days in the moisture, chloride. alkaline, and freeze-thaw environmental conditions. The durability characteristics of conditioned rebars were obtained by comparing the tensile strength, horizontal shear strength, and elastic modulus between the unconditioned and conditioned GFRP rebars. The test results indicated that the mechanical properties of GFRP were significantly reduced after conditioning. Long-term degradation of GFRP rebars was also estimated using the results of a short-term durability test.

Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members (RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안)

  • Choi, Dong-Uk;Chun, Sung-Chul;Ha, Sang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Glass fiber reinforced polymer (GFRP) bars are sometimes used when corrosion of conventional reinforcing steel bar is of concern. In this study, a total of 36 beams and one-way slabs reinforced using GFRP bars were tested in flexure. Four different GFRP bars of 13 mm diameter were used in the test program. In most test specimens, the GFRP bars were lap spliced at center. All beams and slabs were tested under 4-point loads so that the spliced region be subject to constant moment. Test variables were splice lengths, cover thicknesses, and bar spacings. No stirrups were used in the spliced region so that the tests result in conservative bond strengths. Average bond stresses that develop between GFRP bars and concrete were determined through nonlinear analysis of the cross-sections. An average bond stress prediction equation was derived utilizing two-variable linear regression. A splice length equation based on 5% fractile concept was then developed. As a result of this study, a rational equation with which design splice lengths of the GFRP bars can be determined, was proposed.

Equation of the Development Length for the Pullout tests with GFRP Reinforcement having Splitting Failure (쪼갬파괴가 발생된 GFRP 보강근을 사용한 이음길이 산정식)

  • Ha, Sang-Su;Choi, Dong-Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.859-862
    • /
    • 2008
  • The objective of this study offer the equation of the development length for GFRP reinforcement. Pullout test carried out to propose the development length for GFRP reinforcement. Test variables included embedment length (L=15, 30 and 45d$_b$ ), pure cover thickness(C=0.5, 1.0, 1.5, and 2.0d$_b$ ), diameter of reforcement(D10, D13 and D16), and three types, (domestic : K2KR, K3KR, foreign : AsUS) of GFRP reinforcement. The method of test were introduced pure pullout and tests lasted until the GFRP reinforcements were reached final failure. Based on the results through the pullout test, the bond characteristics and average bond stress for GFRP reinforcement were investigated. The equation of development length was proposed based on the regression analysis selected specimens having splitting failure. The equation gained from this study compared with the design equation provided by ACI committee 440.1R-06. The results through this study are capable of the flexural member design with GFRP reinforcement having lab spliced.

  • PDF

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.

Suggestion of the design guideline of the GFRP rebar (GFRP 보강근의 설계지침(안))

  • Sim, Jong-Sung;Park, Young-Hwan;Choi, Dong-Uk;Park, Seok-Kyun;Park, Cheol-Woo;Oh, Hong-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.899-902
    • /
    • 2008
  • The GFRP rebar have been interested as the substituting material of the conventional steel rebar to the concrete structure for high durable concrete structure. The GFRP rebar, however, has different way to be fabricated and mechanical characteristics comparing with the conventional steel rebar. Therefore, to apply the GFRP rebar to the construction field, it needs the proper and reasonable design theory, codes and guidelines. In this study, for the design recommendation of the GFRP rebar, ACI440.IR and ISIS Canada design manual were investigated and concluded that the design theory of ISIS Canada design manual was relatively better design concept considering the limit state of the GFRP rebar in design and analysis. With this design concept, new design equation for the GFRP rebar was suggested and investigated with other design equations.

  • PDF

Behavior of GFRP reinforced decks with various reinforcement ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 거동 실험)

  • You, Young-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Hyeong-Yeol;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebar. A total of three real size bridge deck specimens were made and tested. Main variable was reinforcement ratio of GFRP rebar. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior.

  • PDF

Experimental Study on GFRP Reinforcing Bars with Hollow Section (중공형 GFRP 보강근의 인장성능 실험연구)

  • You, Young-Jun;Park, Ki-Tae;Seo, Dong-Woo;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Fiber-reinforced polymer (FRP) has been generally accepted by civil engineers as an alternative for steel reinforcing bars (rebar) due to its advantageous specific tensile strength and non-corrosiveness. Even though some glass fiber reinforced polymer (GFRP) rebars are available on a market, GFRP is still somewhat uncompetitive over steel rebar due to their high cost and relatively low elastic modulus, and brittle failure characteristic. If the price of component materials of GFRP rebar is not reduced, it would be another solution to increase the performance of each material to the highest degree. The tensile strength generally decreases with increasing diameter of FRP rebar. One of the reasons is that only fibers except for fibers in center resist the external force due to the lack of force transfer and the deformation of only outer fibers by gripping system. Eliminating fibers in the center, which do not play an aimed role fully, are helpful to reduce the price and finally FRP rebar would be optimized over the price. In this study, the effect of the hollow section in a cross-section of a GFRP rebar was investigated. A GFRP rebar with 19 mm diameter was selected and an analysis was performed for the tensile test results. Parameter was the ratio of hollow section over solid cross-section. Four kinds of hollow sections were planned. A total of 27 specimens, six specimens for each hollow section and three specimens with a solid cross-section were manufactured and tested. The change by the ratio of hollow section over solid cross-section was analyzed and an optimized cross-section design was proposed.

A Comparison of Residual Tensile Properties of GFRP Reinforcing Bar at High Temperature and after Exposure to High Temperature (고온과 고온노출 후 GFRP 보강근의 잔존인장성능 비교)

  • Kim, Seongdo;Moon, Doyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • Tensile tests were conducted on the GFRP reinforcement exposed to high temperature. The exposure condition for this study was below $200^{\circ}C$ for about 3 minutes. This conditioning is minor compared with that presented in experimental program conducted by other researchers. The residual tensile strength and elastic modulus of GFRP reinforcing bars at high temperature and after exposure to high temperature were compared. In results, tensile properties were decreased at high temperatures, but those after exposure to high temperature were recovered to pre-heating level almost completely. These results could be valuable for evaluating GFRP reinforced structure damaged by fire accident.