• Title/Summary/Keyword: GEOGRAPHICAL ISOLATION

Search Result 49, Processing Time 0.022 seconds

Species classification of the toxic dinoflagellate Alexandrium tamarense and A. catenella based on their paralytic shellfish toxin profiles

  • Kim, Young-Soo;Kim, Chang-Hoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.128-128
    • /
    • 2003
  • The annually outbreak of paralytic shellfish poisoning (PSP) were caused by toxic dinolagellate A. tamarense and A. catenella in Korea. The purpose of this study were to investigate the distribution of PSP-causative organisms, A. tamarense and A. catenella and their species classification. Sediment (Saemangeum, the south open sea) and water samples (southeastern coast) were sampled to establish clonal isolates in 2003. After isolation and purification, strains were cultured under $17^{\circ}C$, f/2 media, 14:10=L:D cycle. PST analysis and species identification were performed by HPLC-FD method and specific DNA probe, respectively. Thirty-ons strains were isolated from the Saemangeum reclamation, southeastern coast including Jinhae Bay and south open sea. PSTs were detected in all cultured strains. In eight strains from south offshore, major toxin components are GTX5, C1/2 and minors are GTX3/4, dcGTX3, neoSTX. Sixteen strains from south coastal area have GTX1/4, neoSTX, C1/2 as major toxin components and GTX2/3 as minors. Seven strains from the Saemangeum reclamation have GTX5, C1/2 as major toxin components and GTX1/2/3/4 as minors. Thus, among eight south offshore isolates, four A. tamarense have more toxic (38.31~l19.16 fmol.$cell^{-1}$) than A. catenella (3.78~13.13 fmol.$cell^{-1}$). With the previous results of different toxin composition, toxin components and toxin contents, .it is toxin profile that could used to diagnosis of regional toxic population and geographical distribution of both A. tamarense and A. catenella and their toxigenic strains.

  • PDF

Isolation and Genetic Study of Hantavirus from Apodemus peninsulae Captured in Yeuncheon-gun, Kyunggi-do (경기도에서 채집한 Apodemus peninsulae에서 한탄바이러스 분리와 유전학적 연구)

  • Song, Ki-Joon;Kim, Yong-Soo;Lee, Yong-Ju;Kang, Ju-Il;Song, Jin-Won;Baek, Luck-Ju
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.4
    • /
    • pp.337-345
    • /
    • 1998
  • Hantaviruses are distributed in rodent population world-widely even in geographical areas where hemorrhagic fever with renal syndrome (HFRS) has not been reported. Various species of Family Muridae and Arvicolidae serve as the natural reservoirs of hantaviruses. Hantaan virus, Seoul virus, Puumala virus, Prospect HII virus, Sin Nombre virus and New York virus are members of genus Hantavirus and isolated from lungs of A. agrarius, R. norvegicus, C. glareolus, M. pennsylvanicus, P. maniculatus and P. leucopus respectively. This experiment was intended to find the distribution of hantavirus infection among wild rodents and isolate the hantavirus from lung tissue of seropositve Apodemus peninsulae, and compared the nucleotide and amino acid sequences with prototype of hantaan virus 76-118 strain. Hantaviral sequences were amplified from lung tissues of A. peninsulae by reverse-transcriptase polymerase chain reaction. Alignment and comparison of the 324 nucleotide of G2 region of M-genomic segment diverged 4.6% and 0% at the nucleotide and amino acid levels, and complete N protein-coding region of S-genomic segment diverged 3.7% and 1.4% nucleotide and amino acid levels, respectively. This is the report to spill-over on the hantaan virus from A. agrarius to A. peninsulae in Korea.

  • PDF

Genetic Similarity and Variation in the Cultured and Wild Crucian Carp (Carassius carassius) Estimated with Random Amplified Polymorphic DNA

  • Yoon, Jong-Man;Park, Hong-Yang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.470-476
    • /
    • 2002
  • Random amplified polymorphic DNA (RAPD) analysis based on numerous polymorphic bands have been used to investigate genetic similarity and diversity among and within two cultured and wild populations represented by the species crucian carp (Carassius carassius). From RAPD analysis using five primers, a total of 442 polymorphic bands were obtained in the two populations and 273 were found to be specific to a wild population. 169 polymorphic bands were also produced in wild and cultured population. According to RAPD-based estimates, the average number of polymorphic bands in the wild population was approximately 1.5 times as diverse as that in cultured. The average number of polymorphic bands in each population was found to be different and was higher in the wild than in the cultured population. Comparison of banding patterns in the cultured and wild populations revealed substantial differences supporting a previous assessment that the populations may have been subjected to a long period of geographical isolation from each other. The values in wild population altered from 0.21 to 0.51 as calculated by bandsharing analysis. Also, the average level of bandsharing values was $0.40{\pm}0.05 $ in the wild population, compared to $0.69{\pm}0.08$ in the cultured. With reference to bandsharing values and banding patterns, the wild population was considerably more diverse than the cultured. Knowledge of the genetic diversity of crucian carp could help in formulating more effective strategies for managing this aquacultural fish species and also in evaluating the potential genetic effects induced by hatchery operations.

Prevalence of Tobacco mosaic virus in Iran and Evolutionary Analyses of the Coat Protein Gene

  • Alishiri, Athar;Rakhshandehroo, Farshad;Zamanizadeh, Hamid-Reza;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.260-273
    • /
    • 2013
  • The incidence and distribution of Tobacco mosaic virus (TMV) and related tobamoviruses was determined using an enzyme-linked immunosorbent assay on 1,926 symptomatic horticultural crops and 107 asymptomatic weed samples collected from 78 highly infected fields in the major horticultural crop-producing areas in 17 provinces throughout Iran. The results were confirmed by host range studies and reverse transcription-polymerase chain reaction. The overall incidence of infection by these viruses in symptomatic plants was 11.3%. The coat protein (CP) gene sequences of a number of isolates were determined and disclosed to be a high identity (up to 100%) among the Iranian isolates. Phylogenetic analysis of all known TMV CP genes showed three clades on the basis of nucleotide sequences with all Iranian isolates distinctly clustered in clade II. Analysis using the complete CP amino acid sequence showed one clade with two subgroups, IA and IB, with Iranian isolates in both subgroups. The nucleotide diversity within each subgroup was very low, but higher between the two clades. No correlation was found between genetic distance and geographical origin or host species of isolation. Statistical analyses suggested a negative selection and demonstrated the occurrence of gene flow from the isolates in other clades to the Iranian population.

A phylogenetic analysis of the genus Pilea (Urticaceae) using nrDNA and cpDNA sequences (한국산 물통이속(Pilea) 식물의 nrDNA, cpDNA를 통한 계통분석)

  • Moon, Ae-Ra;Park, Jeong-Mi;Jang, Chang-Gee
    • Korean Journal of Plant Taxonomy
    • /
    • v.45 no.2
    • /
    • pp.158-168
    • /
    • 2015
  • A study of the genus Pilea in Korea including five taxa was carried out using molecular phylogenetic methods. The majority of members of the genus Pilea in Korea are annual herbs, and they live in moist habitats, flowering in summer and fruiting in autumn. The results of a phylogenetic analysis using nrDNA and cpDNA supported the recognition of P. japonica, P. peploides, and P. taquetii. Pilea taquetii from Mt. Sanbangsan in Jeju was nested within P. hamaoi and P. mongolica clade instead of the P. taquetii clade, with P. taquetii from Mt. Jirisan also separated from the P. taquetii clade. This indicates that the separation is not geographical isolation, but is instead related to taxonomic problems. Therefore, further study of the P. taquetii group is necessary.

Restoration Model of Evergreen Broad-leaved Forests in Warm Temperate Region(II) - Vegetational Structure - (난대 기후대의 상록활엽수림 복원 모형(II) - 식생구조 -)

  • 오구균;김용식
    • Korean Journal of Environment and Ecology
    • /
    • v.10 no.1
    • /
    • pp.87-102
    • /
    • 1996
  • To study vegetational structure of the Korean warm temperate region fifty two plots were surveyed in evergreen broad-leaved forests of southern islands. The vegetational structures among sites were dissimilar in virtue of geographical isolation and artificial disturbance. The surveyed plots were generally classified into three groups; the first, the group in which plant succession has proceeded naturally, the second, the group which was disturbed and managed for a long time, the third, the group which was afforested and has been succeeded into evergreen broad-leaved forest. The species with constancy over 80% in fifty two plots were Machilus thunbergii, Eurya japonica, Trachelospermum asiaticum var. intermidium, Cinnamomum japonicum, and Ligustrum japonicum. The community of Lozoste lancifolia, which is assumed to be a climax community of the Korean warm temperate region, remains in Chudo and Aedo. The secondary succession of seashore forest which were disturbed in the past will be done into Castanopsis cuspidata var. sieboldii

  • PDF

Occurrence of Rhizoctonia Blight of Zoysiagrasses in Golf Courses in Korea (국내 골프장 한국잔디의 라이족토니아마름병 발생)

  • 심규열;김진원;김희규
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.54-60
    • /
    • 1994
  • Incidence of Rhizoctonia blight ranged from 22.2% to 100% in the golf courses at six geographical locations in Korea from 1989 to 1993. Rhizoctonia blight occurred more severly in southern area than in northern area. Fifty seven isolates of Rhizoctonia solani obtained from diseased parts of zoysiagrasses were grouped to AG2-2 by anastomosis test. Pathogenicity testes revealed that this pathogen was strongly pathogenic to Korean lawngrasses(Zoysia japonica, Z. matrella, Z. tenuifolia), but not pathogenic to creeping bentgrass(Agrostis palustris), bermuldagrass(Cynodon dactylon), Kentucky bluegrass(Poa pratensis), perennial ryegrass(Lolium prenne), and creeping red fescue(Festuca rubra subsp. rubra L.). The isolation frequency of R. solani AG2-2 fro sheaths of the infected plants was the highest by 91.67%, and that from stolons and roots was 11.13% and 5.63% respectively. The pathogen was not isolated from the leaves. Population density of R. solani in the lawn of large circular patch was highest on surface soils down to 1 cm deep with the value of 4.9$\times$104 (CFU/g soil), but below 1 cm population density decreased sharply down to 0.8~9.8$\times$103 (CFU/g soil). Horizontal distribution of propagules in turfgrass soil was higher in the margin than in center of patch, where the number of propagules was similar to these of healthy looking soils close to the margin of diseased patch. The meteorological factors influencing the outbreak of the disease were temperature, the number of rainy days and precipitation. Optimum temperature for disease development of Rhizoctonia blight in field was 20~22$^{\circ}C$, and that for hyphal growth of R. solani AG2-2 in vitro was 25~3$0^{\circ}C$. In Pusan area, Rhizoctonia blight first occurred in late April and rapidly developed in late June. The disease slightly decreased during July to August and developed again in late September in 1993. The monthly disease progress in Pusan area was similar to that in Kyeonggi province.

  • PDF

Small-scale spatial genetic structure of Asarum sieboldii metapopulation in a valley

  • Jeong, Hyeon Jin;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.97-104
    • /
    • 2021
  • Background: Asarum sieboldii Miq., a species of forest understory vegetation, is an herbaceous perennial belonging to the family Aristolochiaceae. The metapopulation of A. sieboldii is distributed sparsely and has a short seed dispersal distance by ants as their seed distributor. It is known that many flowers of A. sieboldii depend on self-fertilization. Because these characteristics can affect negatively in genetic structure, investigating habitat structure and assessment of genetic structure is needed. A total of 27 individuals in a valley were sampled for measuring genetic diversity, genetic distance, and genetic differentiation by RAPDPCR. Results: The habitat areas of A. sieboldii metapopulation were relatively small (3.78~33.60 m2) and population density was very low (five to seven individuals in 20×20 m quadrat). The habitat of A. sieboldii was a very shady (relative light intensity = 0.9%) and mature forest with a high evenness value (J = 0.81~0.99) and a low dominance value (D = 0.19~0.28). The total genetic diversity of A. sieboldii was quite high (h = 0.338, I = 0.506). A total of 33 band loci were observed in five selected primers, and 31 band loci (94%) were polymorphic. However, genetic differentiation along the valley was highly progressed (Gst = 0.548, Nm = 0.412). The average genetic distance between subpopulations was 0.387. The results of AMOVA showed 52.77% of variance occurs among populations, which is evidence of population structuring. Conclusions: It is expected that a small-scale founder effect had occurred, an individual spread far from the original subpopulation formed a new subpopulation. However, geographical distance between individuals would have been far and genetic flow occurred only within each subpopulation because of the low density of population. This made significant genetic distance between the original and new population by distance. Although genetic diversity of A. sieboldii metapopulation is not as low as concerned, the subpopulation of A. sieboldii can disappear by stochastic events due to small subpopulation size and low density of population. To prevent genetic isolation and to enhance the stable population size, conservative efforts such as increasing the size of each subpopulation or the connection between subpopulations are needed.

Morphometric variation, genetic diversity and allelic polymorphism of an underutilised species Thaumatococcus daniellii population in Southwestern Nigeria

  • Animasaun, David Adedayo;Afeez, Azeez;Adedibu, Peter Adeolu;Akande, Feyisayo Priscilla;Oyedeji, Stephen;Olorunmaiye, Kehinde Stephen
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.298-308
    • /
    • 2020
  • Genetic diversity among Thaumatococcus daniellii populations in the southwestern region of Nigeria were assessed using morphometric and molecular markers to determine the population structure and existing genetic relationship for its improvement, conservation and sustainable utilisation. Populations from five locations in each of the six states were used for the study. Morphometric data were collected on folia characters and analysed for variability. Genome DNA was isolated from the plant leaf and amplified by polymerase chain reaction with inter-simple sequence repeat markers (ISSR) to determine the allelic polymorphism, marker effectiveness and genetic relationship of the population. The results showed significant variations in petiole length and leaf dimensions of the populations within and across the states. These morphometric traits are the major parameters that delimit the populations and they correlated significantly at P≤0.05. Analysis of the electrophoregram showed that the ISSR markers are effective for the diversity study. A total of 136 loci were amplified with an average of 7.16 loci per marker, 63.2% of the loci were polymorphic. The Principal Coordinate Analysis revealed that seven factors accounted for 81.6% of the variation and the dendrogram separated the populations into two major groups at a genetic distance of 10 (about 90% similarity) with sub-groups and clusters. Most populations within the state had a high degree of similarity, nonetheless, strong genetic relationship exists among populations from different states. The close relationship between populations across the states suggests a common progenitor, which are likely separated by ecological or geographical isolation mechanisms.

Biological and Molecular Characterization of a Korean Isolate of Orthotospovirus chrysanthinecrocaulis (Formerly Chrysanthemum Stem Necrosis Virus) Isolated from Chrysanthemum morifolium

  • Seong Hyeon Yoon;Su Bin Lee;Eseul Baek;Ho-Jong Ju;Ju-Yeon Yoon
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.286-294
    • /
    • 2023
  • Biological and molecular characterization of a Korean isolate of Orthotospovirus chrysanthinecrocaulis (formerly known as chrysanthemum stem necrosis virus, CSNV) isolated from Chrysanthemum morifolium was determined using host range and sequence analysis in this study. Twenty-three species of indicator plants inoculated mechanically CSNV-Kr was investigated for determination of host range. CSNV-Kr induced various local and systemic symptoms in the inoculated plant species. CSNV-Kr could not infect three plant species and induced symptomless in systemic leaves in Nicotiana tabacum cultivars, though the plant samples reacted positively with the antiserum to CSNV by double-antibody sandwich-enzyme-linked immunosorbent assay. The complete genome sequence of CSNV-Kr was determined. The L RNA of CSNV-Kr consists of 8,959 nucleotides (nt) and encodes a putative RNA-dependent RNA polymerase. The M RNA of CSNV-Kr consists of 4,835 nt and encodes the movement protein (NSm) and the glycoprotein precursor (Gn/Gc protein). The S RNA of CNSV-Kr consists of 2,836 nt and encodes NSs protein and N protein. The Gn/Gc and N sequence of CSNV-Kr were compared with those of previously published CSNV isolates originating from different countries at nucleotide and amino acid levels. The Gn/GC sequence of CSNV-Kr shared 98.8-99.5% identity with CSNV isolated from other countries and the N sequence of CSNV-Kr shared 98.8-99.6% identity. No particular region of variability could be found in either grouping of viruses. All of the CSNV isolates did not show any relationship according to geographical origins and isolation hosts, suggesting no distinct segregation of the CSNV isolates.