DOI QR코드

DOI QR Code

Biological and Molecular Characterization of a Korean Isolate of Orthotospovirus chrysanthinecrocaulis (Formerly Chrysanthemum Stem Necrosis Virus) Isolated from Chrysanthemum morifolium

  • Seong Hyeon Yoon (Department of Plant Protection and Quarantine, Jeonbuk National University) ;
  • Su Bin Lee (Department of Agricultural Biology, Jeonbuk National University) ;
  • Eseul Baek (Department of Plant Protection and Quarantine, Jeonbuk National University) ;
  • Ho-Jong Ju (Department of Plant Protection and Quarantine, Jeonbuk National University) ;
  • Ju-Yeon Yoon (Department of Plant Protection and Quarantine, Jeonbuk National University)
  • Received : 2023.08.03
  • Accepted : 2023.08.18
  • Published : 2023.09.30

Abstract

Biological and molecular characterization of a Korean isolate of Orthotospovirus chrysanthinecrocaulis (formerly known as chrysanthemum stem necrosis virus, CSNV) isolated from Chrysanthemum morifolium was determined using host range and sequence analysis in this study. Twenty-three species of indicator plants inoculated mechanically CSNV-Kr was investigated for determination of host range. CSNV-Kr induced various local and systemic symptoms in the inoculated plant species. CSNV-Kr could not infect three plant species and induced symptomless in systemic leaves in Nicotiana tabacum cultivars, though the plant samples reacted positively with the antiserum to CSNV by double-antibody sandwich-enzyme-linked immunosorbent assay. The complete genome sequence of CSNV-Kr was determined. The L RNA of CSNV-Kr consists of 8,959 nucleotides (nt) and encodes a putative RNA-dependent RNA polymerase. The M RNA of CSNV-Kr consists of 4,835 nt and encodes the movement protein (NSm) and the glycoprotein precursor (Gn/Gc protein). The S RNA of CNSV-Kr consists of 2,836 nt and encodes NSs protein and N protein. The Gn/Gc and N sequence of CSNV-Kr were compared with those of previously published CSNV isolates originating from different countries at nucleotide and amino acid levels. The Gn/GC sequence of CSNV-Kr shared 98.8-99.5% identity with CSNV isolated from other countries and the N sequence of CSNV-Kr shared 98.8-99.6% identity. No particular region of variability could be found in either grouping of viruses. All of the CSNV isolates did not show any relationship according to geographical origins and isolation hosts, suggesting no distinct segregation of the CSNV isolates.

Keywords

Acknowledgement

This study was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321001-03).

References

  1. Adkins, S., Quadt, R., Choi, T. J., Ahlquist, P. and German, T. 1995. An RNA-dependent RNA polymerase activity associated with virions of tomato spotted wilt virus, a plant- and insect-infecting bunyavirus. Virology 207: 308-311. https://doi.org/10.1006/viro.1995.1083
  2. Adkins, S., Turina, M., Whitifield, A., Resende, R., Naidu, R., Hughes, H. et al. 2022. ICTV Code. Rename all existing species to comply with the binomial species format (Bunyavirales: Tospoviridae) TaxoProp 2022.011P.Tospoviridae_rename. URL https://ictv.global/taxonomy [3 August 2023].
  3. Anderson, N. O. 2006. Chrysanthemum. Dendranthema x grandiflora Tzvelv. In: Flower Breeding and Genetics: Issues, Challenges, and Opportunities for the 21st Century, ed. by N. O. Anderson, pp. 389-437. Springer, Dordrecht, The Netherlands.
  4. Bezerra, I. C., Resende, R. de O., Pozzer, L., Nagata, T., Kormelink, R. and De Avila, A. C. 1999. Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89: 823-830. https://doi.org/10.1094/PHYTO.1999.89.9.823
  5. Boben, J., Mehle, N., Pirc, M., Mavric Plesko, I. and Ravnikar, M. 2007. New molecular diagnostic methods for detection of chrysanthemum stem necrosis virus (CSNV). Acta Biol. Slovenica 50: 41-51. https://doi.org/10.14720/abs.50.1.16100
  6. Bos, L. 1976. Symptom expression and variation of rose mosaic. Neth. J. Plant Pathol. 82: 239-249. https://doi.org/10.1007/BF03041379
  7. Bucher, E., Sijen, T., de Haan, P., Goldbach, R. and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol. 77: 1329-1336. https://doi.org/10.1128/JVI.77.2.1329-1336.2003
  8. Chung, B. N., Pak, H. S., Jung, J. A. and Kim, J. S. 2006. Occurrence of tomato spotted wilt virus in chrysanthemum (Dendranthema grandiflorum) in Korea. Plant Pathol. J. 22: 230-234. https://doi.org/10.5423/PPJ.2006.22.3.230
  9. Cortez, I., Saaijer, J., Wongjkaew, K. S., Pereira, A. M., Goldbach, R., Peters, D. et al. 2001. Identification and characterization of a novel tospovirus species using a new RT-PCR approach. Arch. Virol. 146: 265-278. https://doi.org/10.1007/s007050170174
  10. de Haan, P., Kormelink, R., de Oliveira, R. R., Van Poelwijk, F., Peters, D., and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 72: 2207-2216. https://doi.org/10.1099/0022-1317-72-9-2207
  11. De Jonghe, K., Morio, S. and Maes, M. 2013. First outbreak of chrysanthemum stem necrosis virus (CSNV) on potted Chrysanthemum in Belgium. New Dis. Rep. 28: 14.
  12. Duarte, L. M. L., Alexandre, M. A. V., Gobatto, D., Kitajima, E. W. and Harakava, R. 2014. First report of chrysanthemum stem necrosis virus on Russell prairie gentian in Brazil. Plant Dis. 98: 285.
  13. Duarte, L. M. L., Rivas, E. B., Alexandre, M. A. V., De Avila, A. C., Nagata, T. and Chagas, C. M. 1995. Chrysanthemum stem necrosis caused by a possible novel tospovirus. J. Phytopathol. 143: 569-571. https://doi.org/10.1111/j.1439-0434.1995.tb00664.x
  14. Dullemans, A. M., Verhoeven, J. T. J., Kormelink, R. and Van der Vlugt, R. A. A. 2015. The complete nucleotide sequence of chrysanthemum stem necrosis virus. Arch. Virol. 160: 605-608. https://doi.org/10.1007/s00705-014-2282-1
  15. EPPO Datasheet. 2020. PM 7/139 (1) Tospovirus (genus Orthotospovirus). Bull. OEPP/EPPO Bull. 50: 217-240. https://doi.org/10.1111/epp.12676
  16. Feng, Z., Chen, X., Bao, Y., Dong, J., Zhang, Z. and Tao, X. 2013. Nucleocapsid of tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytol. 200: 1212-1224. https://doi.org/10.1111/nph.12447
  17. Guo, Y., Liu, B., Ding, Z., Li, G., Liu, M., Zhu, D. et al. 2017. Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus. J. Virol. 91: e00892-17.
  18. Hull, R. 2014. Plant Virology. 5th ed. Academic Press, Elsevier, San Diego, CA, USA. 1104 pp.
  19. Jafarpour, B., Sabokkhiz, M. A. and Rastegar, M. F. 2010. First report of CSNV in Iran and occurrence of some viral diseases of ornamental plants in Mashhad region, Iran. Petria 20: 273.
  20. Jo, Y., Yoon, Y. N., Jang, Y.-W., Choi, H., Lee, Y.-H., Kim, S.-M. et al. 2020. Soybean viromes in the Republic of Korea revealed by RT-PCR and next-generation sequencing. Microorganisms 8: 1777.
  21. Kikkert, M., Van Lent, J., Storms, M., Bodegom, P., Kormelink, R. and Goldbach, R. 1999. Tomato spotted wilt virus particle morphogenesis in plant cells. J. Virol. 73: 2288-2297. https://doi.org/10.1128/JVI.73.3.2288-2297.1999
  22. Komoda, K., Narita, M., Yamashita, K., Tanaka, I. and Yao, M. 2017. Asymmetric trimeric ring structure of the nucleocapsid protein of tospovirus. J. Virol. 91: e01002-17. https://doi.org/10.1128/JVI.01002-17
  23. Koonin, E. V., Dolja, V. V., Krupovic, M., Varsani, A., Wolf, Y. I., Yutin, N. et al. 2019. Genus Tospovirus. In: Virus Taxonomy: Eighth Report of the International Committee on the Taxonomy of Viruses, eds. by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger and L. A. Ball, pp. 712-716. Elsevier, San Diego, CA, USA.
  24. Kormelink, R., de Haan, P., Meurs, C., Peters, D. and Goldbach, R. 1992. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73: 2795-2804. https://doi.org/10.1099/0022-1317-73-11-2795
  25. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing plantforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  26. Kuwabara, K. and Sakai, H. 2008. Stem necrosis disease of tomato caused by chrysanthemum necrosis virus (CSNV). Jpn. J. Phytopathol. 74: 225. (abstract in Japanese)
  27. Li, J., Feng, Z., Wu, J., Huang, Y., Lu, G., Zhu, M. et al. 2015. Structure and function analysis of nucleocapsid protein of tomato spotted wilt virus interacting with RNA using homology modeling. J. Biol. Chem. 290: 3950-3961. https://doi.org/10.1074/jbc.M114.604678
  28. Maris, P. C., Joosten, N. N., Goldbach, R. W. and Peters, D. 2004. Tomato spotted wilt virus infection improves host suitability for its vector Frankliniella occidentalis. Phytopathology 94: 706-711. https://doi.org/10.1094/PHYTO.2004.94.7.706
  29. Matsuura, S., Kubota, K. and Okuda, M. 2007. First report of chrysanthemum stem necrosis virus on chrysanthemum in Japan. Plant Dis. 91: 468.
  30. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2020. Production of Flower Crops in 2019, in South Korea. Ministry of Agriculture, Food and Rural Affairs (MARFA), Sejong, Korea. 422 pp.
  31. Momonoi, K., Moriwaki, J. and Morikawa, T. 2011. Stem necrosis of aster and Russel prairie gentian caused by chrysanthemum stem necrosis virus. J. Gen. Plant Pathol. 77: 142-146. https://doi.org/10.1007/s10327-011-0299-9
  32. Mumford, R. A., Jarvis, B., Morris, J. and Blockley, A. 2003. First report of chrysanthemum stem necrosis virus (CSNV) in UK. Plant Pathol. 52: 779.
  33. Nagata, T. and De Avila, A. C. 2000. Transmission of chrysanthemum stem necrosis virus, a recently discovered tospovirus, by two thrips species. J. Phytopathol. 148: 123-125. https://doi.org/10.1046/j.1439-0434.2000.00475.x
  34. Nagata, T., Resende, R. de O., Kitajima, E. W., Costa, H., Inoue-Nagata, A. K. and De Avila, A. C. 1998. First report of natural occurrence of zucchini lethal chlorosis tospovirus on cucumber and chrysanthemum stem necrosis tospovirus on tomato in Brazil. Plant Dis. 82: 1403.
  35. Ogada, P. A., Moualeu, D. P. and Poehling, H.-M. 2016. Predictive models for tomato spotted wilt virus spread dynamics, considering Frankliniella occidentalis specific life processes as influenced by the virus. PLoS ONE 11: e0154533.
  36. Okuda, S., Okuda, M., Matsuura, S., Okazaki, S. and Iwai, H. 2013. Competence of Frankliniella occidentalis and Frankliniella intonsa strains as vectors for chrysanthemum stem necrosis virus. Eur. J. Plant Pathol. 136: 355-362. https://doi.org/10.1007/s10658-013-0169-8
  37. Pecman, A., Kutnjak, D., Gutierrez-Aguirre, I., Adams, I., Fox, A., Boonham, N. et al. 2017. Next generation sequencing for detection and discovery of plant viruses and viroids: comparison of two approaches. Front. Microbiol. 8: 1998.
  38. Ravnikar, M., Vozelj, N., Mavrie, I., Svigelj, S. D., Zupaneie, M. and Petrovie, N., 2003. Detection of chrysanthemum stem necrosis virus and tomato spotted wilt virus in chrysanthemum. In: Abstracts 8th International Congress of Plant Pathology. International Society for Plant Pathology, Christchurch, New Zealand.
  39. Ribeiro, D., Foresti, O., Denecke, J., Wellink, J., Goldbach, R. and Kormelink, R. J. M. 2008. Tomato spotted wilt virus glycoproteins induce the formation of endoplasmic reticulum- and Golgiderived pleomorphic membrane structures in plant cells. J. Gen. Virol. 89: 1811-1818. https://doi.org/10.1099/vir.0.2008/001164-0
  40. Ribeiro, D., Jung, M., Moling, S., Borst, J. W., Goldbach, R. and Kormelink, R. 2013. The cytosolic nucleoprotein of the plant-infecting bunyavirus tomato spotted wilt recruits endoplasmic reticulum-resident proteins to endoplasmic reticulum export sites. Plant Cell 25: 3602-3614. https://doi.org/10.1105/tpc.113.114298
  41. Schnettler, E., Hemmes, H., Huismann, R., Goldbach, R., Prins, M. and Kormelink, R. 2010. Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. J. Virol. 84: 11542-11554. https://doi.org/10.1128/JVI.00595-10
  42. Sin, S.-H., McNulty, B. C., Kennedy, G. G. and Moyer, J. W. 2005. Viral genetic determinants for thrips transmission of tomato spotted wilt virus. Proc. Natl. Acad. Sci. U. S. A. 102: 5168-5173. https://doi.org/10.1073/pnas.0407354102
  43. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K. et al. 2002. Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Lett. 532: 75-79. https://doi.org/10.1016/S0014-5793(02)03632-3
  44. Takeshita, M., Nagai, N., Okuda, M., Matsuura, S., Okuda, S., Furuya, N. et al. 2011. Molecular and biological characterization of chrysanthemum stem necrosis virus isolates from distinct regions in Japan. Eur. J. Plant Pathol. 131: 9-14. https://doi.org/10.1007/s10658-011-9797-z
  45. Trolinger, J. C., McGovern, R. J., Elmer, W. H., Rechcigl, N. A. and Shoemaker, C. M. 2018. Diseases of chrysanthemum. In: Handbook of Florists' Crops Diseases, eds. by R. J. McGovern and W. H. Elmer, pp. 439-502. Springer, Cham, Switzerland.
  46. Verhoeven, J. T. J., Roenhorst, J. W., Cortes, I. and Peters, D. 1996. Detection of a novel tospovirus in chrysanthemum. Acta Hortic. 432: 44-51. https://doi.org/10.17660/ActaHortic.1996.432.4
  47. Yoon, J.-B., Choi, S.-K., Cho, I.-S., Kwon, T.-R., Yang, C.-Y., Seo. M.-H. et al. 2020a. Epidemiology of tomato spotted wilt virus in Chrysanthemum morifolium in South Korea and its management using a soil-dwelling predatory mite (Stratiolaelaps scimitus) and essential oils. Virus Res. 289: 198128.
  48. Yoon, J. Y., Choi, G. S. and Choi, S. K. 2017. First report of chrysanthemum stem necrosis virus on Chrysanthemum morifolium in Korea. Plant Dis. 101: 264.
  49. Yoon, J.-Y., Choi, S.-K., Palukaitis, P. and Gray, S. M. 2011. Agrobacterium-mediated infection of whole plants by yellow dwarf viruses. Virus Res. 160: 428-434. https://doi.org/10.1016/j.virusres.2011.06.026
  50. Yoon, J.-Y., Yoon, J.-B., Seo, M.-H., Choi, S.-K., Cho, I.-S., Chung, B.-N. et al. 2020b. Application of multiplex RT-PCR for simultaneous identification of tomato spotted wilt virus and thrips species in an individual thrips on chrysanthemum. Res. Plant Dis. 26: 264-271. (In Korean) https://doi.org/10.5423/RPD.2020.26.4.264