• 제목/요약/키워드: GENETIC LINEAGE

검색결과 107건 처리시간 0.029초

Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging

  • Wu, Szu-Hsien (Sam);Lee, Ji-Hyun;Koo, Bon-Kyoung
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.104-112
    • /
    • 2019
  • Tracking the fate of individual cells and their progeny through lineage tracing has been widely used to investigate various biological processes including embryonic development, homeostatic tissue turnover, and stem cell function in regeneration and disease. Conventional lineage tracing involves the marking of cells either with dyes or nucleoside analogues or genetic marking with fluorescent and/or colorimetric protein reporters. Both are imaging-based approaches that have played a crucial role in the field of developmental biology as well as adult stem cell biology. However, imaging-based lineage tracing approaches are limited by their scalability and the lack of molecular information underlying fate transitions. Recently, computational biology approaches have been combined with diverse tracing methods to overcome these limitations and so provide high-order scalability and a wealth of molecular information. In this review, we will introduce such novel computational methods, starting from single-cell RNA sequencing-based lineage analysis to DNA barcoding or genetic scar analysis. These novel approaches are complementary to conventional imaging-based approaches and enable us to study the lineage relationships of numerous cell types during vertebrate, and in particular human, development and disease.

Expression of the Novel Basic Helix-Loop-Helix Gene dHAND in Neural Crest Derivatives and Extraembryonic Membranes during Mouse Development

  • S.I Yun;Kim, S.K;Kim, S.K.;K.T Chang;B.H Hyun;D.S Son;Kim, M.K;D.S Suh
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.53-54
    • /
    • 2001
  • Expression of HAND genes in sympathetic adrenal lineage suggests that HAND genes may regulate Mash-I independent neuronal genes. HAND genes are also expressed in other cell types, e.g. Cardiac cells, trophoblasts, and decidua, suggesting that HAND genes are not cell fate determination factors. It is unclear how HAND genes function specifically in different types of cells. Combinational actions of HANDs with other cell-lineage specific transcription factor may determine each cell fate and differentiation processes. Identifying the transcription target genes of HANDs and Mash-I will be important to elucidate the function of these bHLH factors in SNS factors in SNS development. (omitted)

  • PDF

A unique genetic lineage at the southern coast of China in the agar-producing Gracilaria vermiculophylla (Gracilariales, Florideophyceae)

  • Hu, Zi-Min;Liu, Ruo-Yu;Zhang, Jie;Duan, De-Lin;Wang, Gao-Ge;Li, Wen-Hong
    • ALGAE
    • /
    • 제33권3호
    • /
    • pp.269-278
    • /
    • 2018
  • Ocean warming can have significant negative impacts on population genetic diversity, local endemism and geographical distribution of a wide range of marine organisms. Thus, the identification of conservation units with high risk of extinction becomes an imperative task to assess, monitor, and manage marine biodiversity for policy-makers. Here, we surveyed population structure and genetic variation of the red seaweed Gracilaria vermiculophylla along the coast of China using genome-based amplified fragment length polymorphism (AFLP) scanning. Regardless of analysis methods used, AFLP consistently revealed a south to north genetic isolation. Populations at the southern coast of China showed unique genetic variation and much greater allelic richness, heterozygosity, and average genetic diversity than the northern. In particular, we identified a geographical barrier that may hinder genetic exchange between the two lineages. Consequently, the characterized genetic lineage at the southern coast of China likely resulted from the interplay of post-glacial persistence of ancestral diversity, geographical isolation and local adaptation. In particular, the southern populations are indispensable components to explore evolutionary genetics and historical biogeography of G. vermiculophylla in the northwestern Pacific, and the unique diversity also has important conservation value in terms of projected climate warming.

Two Maternal Lineages Revealed by Mitochondrial DNA D-loop Sequences in Chinese Native Water Buffaloes (Bubalus bubalis)

  • Lei, Chu-Zhao;Zhang, Wei;Chen, Hong;Lu, Fan;Ge, Qing-Lan;Liu, Ruo-Yu;Dang, Rui-Hua;Yao, Yun-Yi;Yao, Li-Bo;Lu, Zi-Fan;Zhao, Zhong-liang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권4호
    • /
    • pp.471-476
    • /
    • 2007
  • Little is known about the origin and genetic diversity of swamp buffaloes in China. To obtain more knowledge on genetics of the water buffalo in China, the complete mitochondrial D-loop sequences of 30 samples from 6 native types were investigated. The results revealed 12 mitochondrial haplotypes with 50 polymorphic sites. Among these polymorphic sites, there were 49 transitions and 1 transversion. The average nucleotide diversity and haplotype diversity estimated from mtDNA D-loop region in 6 Chinese water buffalo types were 0.00684 and 0.798, respectively, showing rather abundant mitochondrial genetic diversity. The Neighbor-Joining (NJ) tree of mtDNA of Chinese water buffaloes was constructed according to the 12 haplotypes. The NJ tree indicated two lineages being designated lineage A and lineage B, in which lineage A was predominant, and lineage B was at low frequency. The new lineage B was first discovered and defined in 6 Chinese water buffalo types. These results showed that two different maternal lineages were involved in the origin of domestic swamp buffaloes in China and the lineage B was probably an introgression from Southeast Asian buffaloes.

Maternal lineage of Okinawa indigenous Agu pig inferred from mitochondrial DNA control region

  • Touma, Shihei;Shimabukuro, Hirotoshi;Arakawa, Aisaku;Oikawa, Takuro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권4호
    • /
    • pp.501-507
    • /
    • 2019
  • Objective: The Agu is the only native pig breed in Japan, which is reared in Okinawa prefecture, the southernmost region in Japan. Its origins are considered to be of Asian lineage; however, the genetic background of the Agu is still unclear. The objective of this study was to elucidate the maternal lineage of the Okinawa indigenous Agu pig with the use of the mitochondrial DNA (mtDNA) control region. Methods: The mtDNA control regions of Agu pigs were sequenced and the phylogenetic relationship among Agu, East Asian and European pigs was investigated with the use of 78 Agu individuals. Results: Twenty-seven polymorphic sites and five different haplotypes (type 1 to type 5) were identified within the Agu population. Phylogenetic analysis indicated that types 1 and 2 were included in East Asian lineages; however, the remaining types 3, 4, and 5 were of European lineages, which showed a gene flow from European pigs in the 20th century. Sixty-seven out of 78 Agu individuals (85.9%) possessed mtDNA haplotypes 1 and 2 of the East Asian lineage, which were identical to two haplotypes of ancient mtDNA (7,200 to 1,700 years before the present) excavated at archaeological sites in Okinawa. Conclusion: This study confirmed that the East Asian lineage is dominant in the maternal genetic background of the Agu population, supporting the hypothesis that the ancestors of the Agu pig were introduced from the Asian continent.

Association of Genetic Variants in ARID5B, IKZF1 and CEBPE with Risk of Childhood de novo B-Lineage Acute Lymphoblastic Leukemia in India

  • Bhandari, Prerana;Ahmad, Firoz;Mandava, Swarna;Das, Bibhu Ranjan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.3989-3995
    • /
    • 2016
  • Background: Childhood acute lymphoblastic leukemia (ALL) is a heterogeneous genetic disease and its etiology remains poorly understood. Recent genome wide association and replication studies have highlighted specific polymorphisms contributing to childhood ALL predispositions mostly in European populations. It is unclear if these observations generalize to other populations with a lower incidence of ALL. The current case-control study evaluated variants in ARID5B (rs7089424, rs10821936), IKZF1 (rs4132601) and CEBPE (rs2239633) genes, which appear most significantly associated with risk of developing childhood B-lineage ALL. Materials and Methods: Using TaqMan assays, genotyping was conducted for 162 de novo B-lineage ALL cases and 150 unrelated healthy controls in India. Appropriate statistical methods were applied. Results: Genotypic and allelic frequencies differed significantly between cases and controls at IKZF1-rs4132601 (p=0.039, p=0.015) and ARID5B-rs10821936 (p=0.028, p=0.026). Both rs10821936 (p=0.019; OR 0.67; 95% CI=0.47-0.94) and rs4132601 (p=0.018; OR 0.67; 95%CI 0.48-0.94) were associated with reduced disease risk. Moreover, gender-analysis revealed male-specific risk associations for rs10821936 (p=0.041 CT+CC) and rs4132601 (p=0.005 G allele). Further, ARID5B-rs7089424 and CEBPE-rs2239633 showed a trend towards decreased disease risk but without significance (p=0.073; p=0.73). Conclusions: Our findings provide the first evidence that SNPs ARID5B-rs10821936 and IKZF1-rs4132601 are associated with decreased B-lineage ALL susceptibility in Indian children. Understanding the effects of these variants in different ethnic groups is crucial as they may confer different risk of ALL within different populations.

Adult stem cell lineage tracing and deep tissue imaging

  • Fink, Juergen;Andersson-Rolf, Amanda;Koo, Bon-Kyoung
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.655-667
    • /
    • 2015
  • Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.

Population Structure of Fusarium graminearum from Maize and Rice in 2009 in Korea

  • Lee, Seung-Ho;Lee, Jung-Kwan;Nam, Young-Ju;Lee, Soo-Hyung;Ryu, Jae-Gee;Lee, Theresa
    • The Plant Pathology Journal
    • /
    • 제26권4호
    • /
    • pp.321-327
    • /
    • 2010
  • We performed diagnostic PCR assays and a phylogenetic analysis using partial sequences of TEF1 (translation elongation factor-1) to determine the trichothecene chemotypes and genetic diversity of F. graminearum isolates from maize and rice samples collected in 2009 in Korea. PCR using a species-specific primer set revealed a total of 324 isolates belonging to the putative F. graminearum species complex. PCR with trichothecene chemotypespecific primers revealed that the nivalenol (NIV) chemotype was predominant among the fungal isolates from rice (95%) in all provinces examined. In contrast, the predominant chemotype among the corn isolates varied according to region. The deoxynivalenol (DON) chemotype was found more frequently (66%) than the NIV chemotype in Gangwon Province, whereas the NIV chemotype (70%) was predominant in Chungbuk Province. Phylogenetic analysis showed that all DON isolates examined were clustered into lineage 7, while the NIV isolates resided within lineage 6 (F. asiaticum). Compared with previous studies, the lineage 6 isolates in rice have been predominantly maintained in southern provinces, while the dominance of lineage 7 in maize has been evident in Gangwon at a slightly reduced level.

Genetic diversity of Fusarium graminearum from rice in Korea

  • Chang, In-Young;Yun, Sung-Hwan;Lee, Yin-Won
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.123.2-124
    • /
    • 2003
  • Fusarium graminearum (telomorph:Gibberella zeae), an important fungal pathogen of cereal crops with ubiquitous geographic distribution, produces mycotoxins on diseased crops that has threaten human and animal health. Recently severe epidemics of scab diseases of barley and rice by this fungus occurred in Korea, causing serious economic losses. To determine genetic diversity of F. graminearum from rice in Korea, a total of 269 isolates were obtained from Southern part of Korea during 2001-2002. A phylogenetic tree of the isolates was constructed by using amplified fragment length polymorphism (AFLP). Population structure of the rice isolates consists of a single lineage (lineage 6). Frequency of female fertility among these Isolates was relatively low (37%) compared to that among lineage 7 isolates from Korean corn. PCR amplification using chemotype specific primers derived from Tri7 and Tri13 genes at the trichothecene biosynthesis gene cluster revealed that most isolates (260) were NIV chemotype;9 isolates were identified as DON chemotype by Tri13 but as either NIV chemotype or unknown by Tri7. The result of chemical analysis also supported the chemotype determination;all of the NIV chemotype isolates produced NIV, whereas the 9 isolates produce either DON or no toxin.

  • PDF

Genetic Diversity and Origin of Chinese Domestic Goats Revealed by Complete mtDNA D-loop Sequence Variation

  • Liu, R.Y.;Lei, C.Z.;Liu, S.H.;Yang, G.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.178-183
    • /
    • 2007
  • China has numerous native domestic goat breeds, but so far there has been no extensive study on genetic diversity, population demographic history, and origin of Chinese goats. To determine the origin and genetic diversity of Chinese goats, we analyzed the complete mtDNA D-loop sequences of 183 goats from 13 breeds. The haplotype diversity value found in each breed ranged from 0.9333 to 1.0000. The nucleotide diversity value ranged from 0.006337 to 0.025194. Our results showed that there were four mtDNA lineages (A, B, C and D), in which lineage A was predominant, lineage B was moderate, and lineages C and D were at low frequencies. Lineages C and D were observed only in the Tibetan breed. The results revealed multiple maternal origins of Chinese domestic goats. There was weaker geographical structuring in the 13 Chinese goat populations, which suggested that there existed high gene flow among goat populations caused by the extensive transportation of goats in the course of history.