Browse > Article
http://dx.doi.org/10.5483/BMBRep.2015.48.12.249

Adult stem cell lineage tracing and deep tissue imaging  

Fink, Juergen (Department of Genetics and Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge)
Andersson-Rolf, Amanda (Department of Genetics and Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge)
Koo, Bon-Kyoung (Department of Genetics and Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge)
Publication Information
BMB Reports / v.48, no.12, 2015 , pp. 655-667 More about this Journal
Abstract
Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.
Keywords
Adult stem cells; Advanced imaging; Intravital imaging; Lineage tracing; Tissue clearing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brenner S (1974) The Genetics of Caenorhabditis Elegans. Genetics 77, 71-94
2 Sulston JE, Schierenberg E, White JG and Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119   DOI
3 Sulston JE and Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56, 110-156   DOI
4 Kimble J and Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70, 396-417   DOI
5 Kit S, Beck C, Graham OL and Graham O (1958) Effect of 5-Bromodeoxyuridine on Deoxyribonucleic Acid-Thymine Synthesis and Cell Metabolism of Lymphatic Tissues and Tumors Effect of 5-Bromodeoxyuridine on Deoxyribonucleic Acid- Thymine Synthesis and Cell Metabolism of Lymphatic Tissues and Tumors. Cancer Res 18, 598-602
6 Gratzner HG (1982) Monoclonal antibody to 5-bromoand 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science (New York, N.Y.) 218, 474-475   DOI
7 Ritsma L, Ellenbroek SI, Zomer A et al (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362-365   DOI
8 Sipkins DA, Wei X, Wu JW et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969-973   DOI
9 Zomer A, Ellenbroek SI, Ritsma L, Beerling E, Vrisekoop N and Van Rheenen J (2013) Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31, 602-606   DOI
10 Yang M, Baranov E, Wang JW et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci U S A 99, 3824-3829   DOI
11 Bins AD, van Rheenen J, Jalink K et al (2007) Intravital imaging of fluorescent markers and FRET probes by DNA tattooing. BMC Biotechnol 7, 2   DOI
12 Perentes JY, McKee TD, Ley CD et al (2009) In vivo imaging of extracellular matrix remodeling by tumorassociated fibroblasts. Nat Methods 6, 143-145   DOI
13 Chen J, McKay RM and Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149, 36-47   DOI
14 Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science (New York, N.Y.) 337, 730-735   DOI
15 Jacobs RE, Papan C, Ruffins S, Tyszka JM and Fraser SE (2003) MRI: volumetric imaging for vital imaging and atlas construction. Nat Rev Mol Cell Biol Suppl, SS10-SS16
16 Morstyn G, Pyke K, Gardner J, Ashcroft R, de Fazio A and Bhathal P (1986) Immunohistochemical identification of proliferating cells in organ culture using bromodeoxyuridine and a monoclonal antibody. J Histochem Cytochem 34, 697-701   DOI
17 Trent JM, Gerner E, Broderick R and Crossen PE (1986) Cell cycle analysis using bromodeoxyuridine: Comparison of methods for analysis of total cell transit time. Cancer Genet Cytogenet 19, 43-50   DOI
18 Miller MW and Nowakowski RS (1988) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res 457, 44-52   DOI
19 Dolbeare F, Gratzner H, Pallavicini MG and Gray JW (1983) Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci U S A 80, 5573-5577   DOI
20 Gray JW, Dolbeare F, Pallavicini MG, Beisker W and Waldman F (1986) Cell cycle analysis using flow cytometry. Int J Radiat Biol Relat Stud Phys Chem Med 49, 237-255   DOI
21 Kubbies M, Schindler D, Hoehn H and Rabinovitch PS (1985) Cell cycle kinetics by BrdU-Hoechst flow cytometry: an alternative to the differential metaphase labelling technique. Cell Tissue Kinet 18, 551-562
22 Schulte DM, Shapiro I, Reincke M and Beuschlein F (2007) Expression and spatio-temporal distribution of differentiation and proliferation markers during mouse adrenal development. Gene Expr Patterns 7, 72-81   DOI
23 Tanaka R, Tainaka M, Ota T et al (2011) Accurate determination of S-phase fraction in proliferative cells by dual fluorescence and peroxidase immunohistochemistry with 5-bromo-2’-deoxyuridine (BrdU) and Ki67 antibodies. J Histochem Cytochem 59, 791-798   DOI
24 Tannous BA, Grimm J, Perry KF, Chen JW, Weissleder R and Breakefield XO (2006) Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods 3, 391-396   DOI
25 Avital I, Summers TA, Steele SR et al (2013) Colorectal cancer stem cells as biomarkers: where it all starts? J Surg Oncol 107, 791-793   DOI
26 Shapiro EM, Sharer K, Skrtic S and Koretsky AP (2006) In vivo detection of single cells by MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 55, 242-249   DOI
27 Hao D, Ai T, Goerner F, Hu X, Runge VM and Tweedle M (2012) MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 36, 1060-1071   DOI
28 Patrick PS, Hammersley J, Loizou L et al (2014) Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A 111, 415-420   DOI
29 Cohen B, Ziv K, Plaks V et al (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13, 498-503   DOI
30 Vande Velde G, Raman Rangarajan J, Vreys R et al (2012) Quantitative evaluation of MRI-based tracking of ferritin-labeled endogenous neural stem cell progeny in rodent brain. NeuroImage 62, 367-380   DOI
31 Vandsburger MH, Radoul M, Cohen B and Neeman M (2013) MRI reporter genes: applications for imaging of cell survival, proliferation, migration and differentiation. NMR Biomed 26, 872-884   DOI
32 Abremski K and Hoess R (1984) Bacteriophage P1 Site-specific Recombination. J Biol Chem 259, 1509-1514
33 Chwalinski S, Potten CS and Evans G (1988) Double labelling with bromodeoxyuridine and [3H]-thymidine of proliferative cells in small intestinal epithelium in steady state and after irradiation. Cell Tissue Kinet 21, 317-329
34 Barker N, van Es JH, Jaks V et al (2008) Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5+ve stem cells. Cold Spring Harb Symp Quant Biol 73, 351-356   DOI
35 Ito M, Liu Y, Yang Z et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11, 1351-1354   DOI
36 Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237, 752-757   DOI
37 Tsien JZ, Chen DF, Gerber D et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317-1326   DOI
38 Akagi K, Sandig V, Vooijs M et al (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25, 1766-1773   DOI
39 Novak A, Guo C, Yang W, Nagy A and Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 155, 147-155
40 Srinivas S, Watanabe T, Lin CS et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1, 4   DOI
41 de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23, 1407-1413   DOI
42 Jing XH, Yang L, Duan XJ et al (2008) In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75, 432-438   DOI
43 Hu SL, Lu PG, Zhang LJ et al (2012) In vivo magnetic resonance imaging tracking of SPIO-labeled human umbilical cord mesenchymal stem cells. J Cell Biochem 113, 1005-1012   DOI
44 Jackson J, Chapon C, Jones W, Hirani E, Qassim A and Bhakoo K (2009) In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson’s disease. J Neurosci Methods 183, 141-148   DOI
45 Mahmoudi M, Hosseinkhani H, Hosseinkhani M et al (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111, 253-280   DOI
46 Gurun G, Tekes C, Zahorian J et al (2014) Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61, 239-250   DOI
47 Hong G, Diao S, Chang J et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8, 723-730   DOI
48 Guayasamin JM, Castroviejo-Fisher S, Ayarzagüena J, Trueb L and Vilà C (2008) Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Mol Phylogenet Evol 48, 574-595   DOI
49 Cai D, Cohen KB, Luo T, Lichtman JW and Sanes JR (2013) Improved tools for the Brainbow toolbox. Nat Methods 10, 540-547   DOI
50 Mao X, Fujiwara Y, Chapdelaine A, Yang H and Orkin SH (2001) Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324-326   DOI
51 Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134-144   DOI
52 Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56-62   DOI
53 Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007   DOI
54 Van der Flier LG, Sabates-Bellver J, Oving I et al (2007) The Intestinal Wnt/TCF Signature. Gastroenterology 132, 628-632   DOI
55 Van de Wetering M, Sancho E, Verweij C et al (2002) The β-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells. Cell 111, 241-250   DOI
56 Barker N, Huch M, Kujala P et al (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build longlived gastric units in vitro. Cell Stem Cell 6, 25-36   DOI
57 Bush PG, Wokosin DL and Hall AC (2008) Europe PMC Funders Group Two-versus one photon excitation laser scanning microscopy: Critical importance of excitation wavelength. 2008
58 Wang E, Babbey CM and Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218, 148-159   DOI
59 Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838   DOI
60 Ran FA, Hsu PD, Lin CY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389   DOI
61 Denk W, Strickler JH and Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science (New York, N.Y.) 248, 73-76   DOI
62 Kaiser W and Garrett CGB (1961) Two-photon Excitation in CaF2:EU2+. Phy Rev Lett 7, 229-232   DOI
63 Abella ID (1962) Optical Double-Photon Absorption In Caesium Vapor. Phy Rev Lett 9, 453-455   DOI
64 Goeppert-Mayer M (1930) Ueber Elementarakte mit zwei Quantenspruengen. 114
65 Chen BC, Legant WR, Wang K et al (2014) Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998-1257998   DOI
66 Dodt HU, Leischner U, Schierloh A et al (2007) Ultramicroscopy : three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4, 331-336   DOI
67 Huisken J, Swoger J, Del Bene F, Wittbrodt J and Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 13-16   DOI
68 Wu Y, Wawrzusin P, Senseney J et al (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31, 1032-1038   DOI
69 Tomer R, Ye L, Hsueh B and Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9, 1682-1697   DOI
70 Strobl F, Schmitz A and Stelzer EH (2015) Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy. Nat Protoc 10, 1486-1507   DOI
71 Wolf S, Supatto W, Debrégeas G et al (2015) Wholebrain functional imaging with two-photon light-sheet microscopy. Nat Methods 12, 379-380   DOI
72 Keller PJ and Ahrens MB (2015) Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron 85, 462-483   DOI
73 Lemon WC, Pulver SR, Höckendorf B et al (2015) Whole-central nervous system functional imaging in larval Drosophila. Nat Commun 6, 7924   DOI
74 Udan RS, Piazza VG, Hsu CW, Hadjantonakis AK and Dickinson ME (2014) Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development (Cambridge, England) 141, 4406-4414   DOI
75 Keller PJ, Schmidt AD, Wittbrodt J and Stelzer EH (2011) Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold Spring Harb Protoc 2011, 1235-1243   DOI
76 Tomer R, Khairy K, Amat F and Keller PJ (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9, 755-763   DOI
77 Soderblom C, Luo X, Blumenthal E et al (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33, 13882-13887   DOI
78 Spalteholz W (1914) Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen. Leipzig: S. Hirzel
79 Dent JA, Polson AG and Klymkowsky MW (1989) A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development 74, 61-74
80 Becker K, Jährling N, Kramer ER, Schnorrer F and Dodt HU (2008) Ultramicroscopy: 3D reconstruction of large microscopical specimens. J Biophotonics 1, 36-42   DOI
81 Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14, 1481-1488   DOI
82 Ertürk A, Mauch CP, Hellal F et al (2012) Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 18, 166-171   DOI
83 Ertürk A, Becker K, Jährling N et al (2012) Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc 7, 1983-1995   DOI
84 Becker K, Jährling N, Saghafi S, Weiler R and Dodt HU (2012) Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 7, e33916   DOI
85 Chung K, Wallace J, Kim SY et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497, 332-337   DOI
86 Lee H, Park JH, Seo I, Park SH and Kim S (2014) Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Dev Biol 14, 48   DOI
87 Yang B, Treweek JB, Kulkarni RP et al (2014) Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing. Cell 158, 945-958   DOI
88 Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD and Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446, 185-189   DOI
89 Blanpain C and Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14, 489-502   DOI
90 Ritsma L, Ellenbroek SI, Zomer A et al (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362-365   DOI
91 Alcolea MP, Greulich P, Wabik A, Frede J, Simons BD and Jones PH (2014) Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat Cell Biol 16, 615-622   DOI
92 Doupé DP, Klein AM, Simons BD and Jones PH (2010) The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev Cell 18, 317-323   DOI
93 Lopez-Garcia C, Klein AM, Simons BD and Winton DJ (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science (New York, N.Y.) 330, 822-825   DOI
94 Snippert HJ, Schepers AG, van Es JH, Simons BD and Clevers H (2014) Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep 15, 62-69   DOI
95 Klein AM, Nakagawa T, Ichikawa R, Yoshida S and Simons BD (2010) Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell 7, 214-224   DOI
96 Ousset M, Van Keymeulen A, Bouvencourt G et al (2012) Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 14, 1131-1138   DOI
97 Baker M (2010) Taking a long, hard look. Nature 466, 1137-1140   DOI
98 Vermeulen L, Morrissey E, van der Heijden M et al (2013) Defining stem cell dynamics in models of intestinal tumor initiation. Science (New York, N.Y.) 342, 995-998   DOI
99 Kozar S, Morrissey E, Nicholson AM et al (2013) Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13, 626-633   DOI
100 Driessens G, Beck B, Caauwe A, Simons BD and Blanpain C (2012) Defining the mode of tumour growth by clonal analysis. Nature 488, 527-530   DOI
101 Qian X, Goderie SK, Shen Q, Stern JH and Temple S (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 3152, 3143-3152
102 Hiraoka Y, Sedat JW and Agard DA (1987) The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science (New York, N.Y.) 238, 36-41   DOI
103 Lichtman JW and Conchello JA (2005) Fluorescence microscopy. Nat Methods 2, 910-919   DOI
104 Kokkaliaris KD, Loeffler D and Schroeder T (2012) Advances in tracking hematopoiesis at the single-cell level. Curr Opin Hematol 19, 243-249   DOI
105 Schroeder T (2008) Imaging stem-cell-driven regeneration in mammals. Nature 453, 345-351   DOI
106 Cohen AR, Gomes FL, Roysam B and Cayouette M (2010) Computational prediction of neural progenitor cell fates. Nat Methods 7, 213-218   DOI
107 Morris SA, Teo RT, Li H, Robson P, Glover DM and Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci U S A 107, 6364-6369   DOI
108 Megason SG and Fraser SE (2003) Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech Dev 120, 1407-1420   DOI
109 Megason SG and Fraser SE (2011) Current challenges in image analysis for in toto imaging of zebrafish. 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, March 2011: 10.1109/ISBI.2011.5872739   DOI
110 Krupa M, Mazur E, Szczepańska K, Filimonow K, Maleszewski M and Suwińska A (2014) Allocation of inner cells to epiblast vs primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells). Dev Biol 385, 136-148   DOI
111 Morris SA, Graham SJ, Jedrusik A and Zernicka-Goetz M (2013) The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos. Open Biol 3, 130104   DOI
112 Bedzhov I and Zernicka-Goetz M (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156, 1032-1044   DOI
113 Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-265   DOI
114 Koo BK, Stange DE, Sato T et al (2012) Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9, 81-83   DOI
115 Greer LF 3rd and Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17, 43-74   DOI
116 Schwank G, Andersson-Rolf A, Koo BK, Sasaki N and Clevers H (2013) Generation of BAC transgenic epithelial organoids. PLoS One 8, e76871   DOI
117 Schwank G, Koo BK, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658   DOI
118 Sato T and Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science (New York, N.Y.) 340, 1190-1194   DOI
119 Kocher B and Piwnica-Worms D (2013) Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 3, 616-629   DOI
120 Woolfenden S, Zhu H and Charest A (2009) A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis (New York, N.Y. : 2000) 47, 659-666   DOI
121 Sato A, Klaunberg B and Tolwani R (2004) In vivo bioluminescence imaging. Comp Med 54, 631-634
122 Wood S (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66, 550-568
123 Lehr HA, Leunig M, Menger MD, Nolte D and Messmer K (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143, 1055-1062
124 Makale M (2007) Intravital imaging and cell invasion. Methods Enzymol 426, 375-401   DOI
125 Ritsma L, Steller EJ, Ellenbroek SI, Kranenburg O, Borel Rinkes IH and van Rheenen J (2013) Surgical implantation of an abdominal imaging window for intravital microscopy. Nat Protoc 8, 583-594   DOI
126 Kedrin D, Gligorijevic B, Wyckoff J et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5, 1019-1021   DOI
127 Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67, 2649-2656   DOI
128 Zhang L, Lapierre A, Roy B et al (2012) Imaging glioma initiation in vivo through a polished and reinforced thin-skull cranial window. J Vis Exp 69, doi: 10.3791/4201   DOI
129 Weigert R, Sramkova M, Parente L, Amornphimoltham P and Masedunskas A (2010) Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133, 481-491   DOI
130 Pittet MJ and Weissleder R (2011) Intravital imaging. Cell 147, 983-991   DOI
131 Ritsma L, Ponsioen B and van Rheenen J (2012) Intravital imaging of cell signaling in mice. IntraVital 1, 1   DOI
132 Zhou ZN, Sharma VP, Beaty BT et al (2013) Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene 33, 3784-3793   DOI
133 Nakasone ES, Askautrud HA, Kees T et al (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488-503   DOI