Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.4.321

Population Structure of Fusarium graminearum from Maize and Rice in 2009 in Korea  

Lee, Seung-Ho (Microbial Safety Division, National Academy of Agricultural Science, RDA)
Lee, Jung-Kwan (Center for Fungal Pathogenesis, Seoul National University)
Nam, Young-Ju (Microbial Safety Division, National Academy of Agricultural Science, RDA)
Lee, Soo-Hyung (Microbial Safety Division, National Academy of Agricultural Science, RDA)
Ryu, Jae-Gee (Microbial Safety Division, National Academy of Agricultural Science, RDA)
Lee, Theresa (Microbial Safety Division, National Academy of Agricultural Science, RDA)
Publication Information
The Plant Pathology Journal / v.26, no.4, 2010 , pp. 321-327 More about this Journal
Abstract
We performed diagnostic PCR assays and a phylogenetic analysis using partial sequences of TEF1 (translation elongation factor-1) to determine the trichothecene chemotypes and genetic diversity of F. graminearum isolates from maize and rice samples collected in 2009 in Korea. PCR using a species-specific primer set revealed a total of 324 isolates belonging to the putative F. graminearum species complex. PCR with trichothecene chemotypespecific primers revealed that the nivalenol (NIV) chemotype was predominant among the fungal isolates from rice (95%) in all provinces examined. In contrast, the predominant chemotype among the corn isolates varied according to region. The deoxynivalenol (DON) chemotype was found more frequently (66%) than the NIV chemotype in Gangwon Province, whereas the NIV chemotype (70%) was predominant in Chungbuk Province. Phylogenetic analysis showed that all DON isolates examined were clustered into lineage 7, while the NIV isolates resided within lineage 6 (F. asiaticum). Compared with previous studies, the lineage 6 isolates in rice have been predominantly maintained in southern provinces, while the dominance of lineage 7 in maize has been evident in Gangwon at a slightly reduced level.
Keywords
Fusarium asiaticum; F. graminearum; lineage; maize; rice; TEF1;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K. Gaba, D., Patick, S., Starkey, D. E., Gilbert, J., Geiser, D. and Nowicki, T. W. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45:473-484.   DOI   ScienceOn
2 Yang, L., Lee, T., Yang, X., Yu, D. and Waalwijk, C. 2008. Fusarium population on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 98:719-727.   DOI   ScienceOn
3 Yli-Mattila, T., Gagkaeva, T., Ward, T. J., Aoki, T., Kistler, H. C. and O’Donnell, K. 2009. A novel Asian clade within Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841-852.   DOI   ScienceOn
4 Zhang, Z., Zhang, H., Lee, T., Chen, W. Q., Arens, P., Xu, J., Xu, J. S., Yang, L. J., Yu, D. Z., Waalwijk, C. and Feng, J. 2010. Geographic substructure of Fusarium asiaticum isolates collected from barly in China. Eur. J. Plant Pathol. 127:239-248.   DOI   ScienceOn
5 Scoz, L. B., Astolfi, P., Reartes, D. S., Schmale III, D. G., Moraes, M. G. and Del Ponte, E. M. 2009. Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathology 58:344-351.   DOI   ScienceOn
6 Suga, H., Karugia, G. W., Ward, T., Gale, L. R., Tomimura, K., Nakajima, T., Miyasaka, A., Koizumi, S., Kageyama, K. and Hyakumachi, M. 2008. Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159-166.   DOI   ScienceOn
7 Starkey, D. E., Ward, T. J., Aoki, T., Gale, L. R., Kistler, H. C., Geiser, D. M., Suga, H., Tóth, B., Varga, J. and O’Donnell, K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44:1191-1204.   DOI   ScienceOn
8 Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI   ScienceOn
9 Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.   DOI
10 Ueda, A., Nishimoto, H., Kato, N., Hirano, T. and Fukaya, M. 2007. Lineages and trichothecene mycotoxin types of fusarium head blight pathogens of wheat and barley in Todai district. Res. Bull. Aichi. Agric. Res. Ctr. 39:17-23.
11 Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. and O’Donnell, K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. Natl. Acad. Sci. USA 99:9278-9283.   DOI   ScienceOn
12 Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA.
13 Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H., Lees, N., Parry, A. K. and Joyce, D. W. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 53:17-37.   DOI   ScienceOn
14 O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Condordant evidence from nuclear and mitochondrial gene genealogies. Appl. Biol. Sci. 95:2044-2049.
15 O’Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97:7905-7910.   DOI   ScienceOn
16 O’Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C. and Aoki, T. 2004. Genealogical concordance between the mating-type locus and seven other nuclear gene supports formal recognition of nine phylogenetically distinct species within the Fusariumgraminearum clade. Fungal Genet. Biol. 41:600-623.   DOI   ScienceOn
17 Gale, R. L., Chen, L. F., Hernick, C. A., Takamura, K. and Kistler, H. C. 2002. Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 92:1315-1322.   DOI   ScienceOn
18 O’Donnell, K., Ward, T. J., Aberra, D., Kistler, H. C., Aoki, T., Orwing, N., Kimura, M., Bjørnstad, Å. and Klemsdal, S. S. 2008. Multilocus genotyping and molecular phylogentics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genet. Biol. 45:1514-1522.   DOI   ScienceOn
19 Proctor, R. H., Hohn, T. M. and McCormick, S. P. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8:593-601.   DOI   ScienceOn
20 Qu, B., Li, H. P., Zhang, J. B., Xu, Y. B., Huang, T., Wu, A. B., Zhao, C. S., Carter, J., Nicholson, P. and Liao, Y. C. 2008. Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 57:15-24.
21 Geiser, D. M., Jiménez-Gasco1, M. M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A. and O’Donnell, K. 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. of Plant Pathol. 110:473-479.   DOI
22 Karugia, G. W., Suga, H., Gzle, L. R., Nakajima, T., Ueda, A. and Hyakumachi, M. 2009. Population structure of Fusarium asiaticum from two Japanese regions and eastern China. J. Gen. Plant Pathol. 75:110-118.   DOI
23 Kim, H. S., Lee, T., Dawlatana, M., Yun, S. H. and Lee, Y. W. 2003. Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol. Res. 107:190-197.   DOI   ScienceOn
24 Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295.   DOI   ScienceOn
25 Lee, Y. W., Jeon, J. J., Kim, H., Jang, I. Y., Kim, H. S., Yun, S. H. and Kim, J. G. 2004. Lineage composition and trichothecenes production of Gibberella zeae population in Korea, p.117-122. In T. Yoshizawa (ed.), New horizons of mycotoxicology for assuring food safety. Japanese Association of Mycotoxicology, Kagawa, Japan.
26 Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. and Lee, Y. W. 2002. Tri13 and Tri7 determine deoxynivalenol and nivalenol producing chemotypes of Gibberella zeae. Appl. Environ. Microbiol. 68:2148-2154.   DOI
27 Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. and Lee, Y. W. 2001. Identification of deoxynivalenol and nivalenol producing chemotypes of Gibberella zeae using PCR. Appl. Environ. Microbiol. 67:2966-2972.   DOI   ScienceOn
28 Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
29 Bottalico, A. 1998. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 80:85-103.