• Title/Summary/Keyword: GC-Ion trap MS

Search Result 15, Processing Time 0.028 seconds

Gas Chromatography-High Resolution Tandem Mass Spectrometry Using a GC-APPI-LIT Orbitrap for Complex Volatile Compounds Analysis

  • Lee, Young-Jin;Smith, Erica A.;Jun, Ji-Hyun
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • A new approach of volatile compounds analysis is proposed using a linear ion trap Orbitrap mass spectrometer coupled with gas chromatography through an atmospheric pressure photoionization interface. In the proposed GC-HRMS/MS approach, direct chemical composition analysis is made for the precursor ions in high resolution MS spectra and the structural identifications were made through the database search of high quality MS/MS spectra. Successful analysis of a complex perfume sample was demonstrated and compared with GC-EI-Q and GC-EI-TOF. The current approach is complementary to conventional GC-EI-MS analysis and can identify low abundance co-eluting compounds. Toluene co-sprayed as a dopant through API probe significantly enhanced ionization of certain compounds and reduced oxidation during the ionization.

Simultaneous Determination of 285 Chemicals in Water at ppt Levels by GC-Ion Trap Mass Spectrometry

  • Kadokami, Kiwao;Sato, Kenji;Koga, Minoru;Shinohara, Ryota
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.771-778
    • /
    • 1995
  • The authors have developed an analytical method for determining trace amounts of 285 kinds of chemicals in natural waters by GC-ion trap MS. The results of overall recovery tests at $0.1{\mu}g/l$ showed that the mean recovery was 92.1% and the mean relative standard deviation was 10.8%. The mean of the method detection limits was $0.036{\mu}g/l$. From the results of analysis of real samples, it was confirmed that this method is useful to elucidate the concentration levels and the fate of chemicals in the aquatic environment.

  • PDF

GC-MS/Ms Analysis of Benzo(a)pyrene by Ion Trap Tandem Mass Spectrometry

  • Nam, Jae-Jak;Lee, Sang-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1097-1102
    • /
    • 2002
  • The mass spectrometry using an ion trap tandem mass spectrometer has been investigated to find optimum conditions for the analysis of benzo(a)pyrene (3,4-benzpyrene). The applicability to a real soil sample was also investigated to verify the usef ulness of the MS/MS (or collision induced dissociation, CID) analysis. The optimum CID condition was 1.5 and 0.45 for the RF excitation voltage and the q value, respectively. For comparison, CID and EI were applied to the analysis of a soil sample. CID analysis was more sensitive than EI analysis of the soil sample. The limit of detection (LOD) of benzo(a)pyrene was 3.18 ng mL-1 and 0.85 ng mL,-1 for EI and MS/MS analysis, respectively. The precision at the soil sample for EI and CID showed relative standard deviations of 6.1% and 4.1%, respectively, and the concentrations were 168 ㎍ kg-1 and 162 ㎍ kg-1 , respectively.

Determination of Mequitazine in Human Plasma by Gas-Chro-matography/Mass Spectrometry with Ion-Trap Detector and Its Pharmacokinetics after Oral Administration to Volunteers

  • Kwon Oh-Seung;Kim Hye-Jung;Pyo Heesoo;Chung Suk-Jae;Chung Youn Bok
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1190-1195
    • /
    • 2005
  • The objective of this study was to develop an assay for mequitazine (MQZ) for the study of the bioavailability of the drug in human subjects. Using one mL of human plasma, the pH of the sample was adjusted and MQZ in the aqueous phase extracted with hexane; the organic layer was then evaporated to dryness, reconstituted and an aliquot introduced to a gas chromatograph/mass spectrometer (GC/MS) system with ion-trap detector. Inter- and intra-day precision of the assay were less than 15.1 and $17.7{\%}$, respectively; Inter- and intra-day accuracy were less than 8.91 and $18.6{\%}$, respectively. The limit of quantification for the current assay was set at 1 ng/mL. To determine whether the current assay is applicable in a pharmacokinetic study for MQZ in human, oral formulation containing 10 mg MQZ was administered to healthy male subjects and blood samples collected. The current assay was able to quantify MQZ levels in most of the samples. The maximum concentration ($C_{max}$ was 8.5 ng/mL, which was obtained at 10.1 h, with mean half-life of approximately 45.5 h. Under the current sampling protocol, the ratio of $AUC_{t{\rightarrow}last}$ to $AUC_{t{\rightarrow}{\infty}}$ was $934{\%}$, indicating that the blood collection time of 216 h is reasonable for MQZ. Therefore, these observations indicate that an assay for MQZ in human plasma is developed by using GC/MS with ion-trap detector and validated for the study of pharmacokinetics of single oral dose of 10 mg MQZ, and that the current study design for the bioavailability study is adequate for the drug.

A Study on the Emission of Hazardous Volatile Compounds in Wood and Steel Furniture (목재 및 철재가구중의 유해물질 방출에 관한 연구)

  • Kim, Sun-Tae;Park, Kyung-Su;Kim, Byoung-Eog;Woo, Soon-Hyung
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.194-201
    • /
    • 1998
  • The formaldehyde vapor produced from wood and steel furniture was absorbed in distilled water and derivatized with acetylacetone and determined by UV-visible spectrophotometry. Variation in HCHO emission with time was monitored at room temperature. The emission of volatile compounds from wood, wood-based and steel-based materials was investigated in a 50 mL glass vial. The concentration of the gases emitted in a glass vial was determined by ion-trap GC-MS.

  • PDF

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF

Toxic Assessment on Effluents of Argo/Industrial Wastewater Treatment Plants in Jeonnam using Chemical and Biological Method (전남 농공단지 폐수처리장 방류수의 화학적/생물학적 독성평가)

  • Lee, Moon-Hee;Choi, Ik-Chang;Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.267-273
    • /
    • 2008
  • The purpose of this study is to investigate the distributive property of organic pollutants in effluents of argo/industrial wastewater treatment plants in Jeonnam using simultaneous analysis method of 310 chemicals. The numerous organic pollutants were detected in four sampling sites and the major chemicals were pesticides, CH type chemicals such as polycyclic compounds, CHO type chemicals such as phthalates, and CHO(N) type chemical such as aromatic amines. Moreover, 17 kinds of endocrine disrupters which include diethylptbalate were detected in each sampling sites. TU (Toxic unit) indicated cytotoxicity of samples using XTT assay, it appeared highly at A point(27.2) and D point(24.4). Also, the results from the correlation between total concentration of pollutants and TU did not correspond to the results of chemical and biological analysis.

  • PDF

The Quantitative Analysis of Polycyclic Aromatic Hydrocarbons(PAHs) in Sewage Sludge by Gas Chromatography-Ion Trap Mass Spectrometry (가스크로마토그래피-이온트랩질량분석법을 이용한 하수슬러지 중 다핵방향족탄화수소(PAHs) 함량 분석)

  • 남재작;소규호;박우균;조남준;이상학
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.367-373
    • /
    • 2002
  • The polycyclic aromatic hydrocarbons(PAHs) content in sewage sludge was determined by gas chromatography linked to ion trap mass spectrometry(GC/ITMS) with five deuterated PAHs as internal standards. The minimum detection limit was from 1.66 to 7.14 pg for individual PAH by GC/ITMS. For determining total PAHs(∑PAH) in sewage sludge 84 samples from 74 waste water treatment plants in whole country were analyzed. The average content of ∑PAH far whole samples was 3,289$\pm$3,098 $\mu\textrm{g}$/kg, and ranged from 142 to maximum 20,102 $\mu\textrm{g}$/kg. According to the number of population of the city, the areas were classified as five regions, ie. big, large, middle, small, and rural area in which the waste water treated plants were grown. The contents of PAHs were 4,689$\pm$5,503, 5,839$\pm$6,401, 3,725$\pm$2,053, 2,237$\pm$2,069, and 2,475$\pm$1,489 $\mu\textrm{g}$/kg, in big, large, middle, small, and rural area, respectively.

Analysis of Polycyclic Aromatic Hydrocarbons in Agricultural Soils by Gas Chromatography-Ion Trap Tandem Mass Spectrometry

  • Nam, Jae-Jak;Lee, Sang-Hak
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.113-118
    • /
    • 2003
  • An investigation has been carried out on collision-induced dissociation (CID) in the development of an analytical protocol for the determination of polycyclic aromatic hydrocarbons (PARs) by ion trap tandem mass spectrometry. Two different considerations were used to choose the optimal CID conditions for complex matrix environmental samples, namely, to determine the highest signal-to-noise (SIN) ratio and the other to eliminate the background interferences originated from complex matrix samples. The PAR content of agricultural soil was measured to estimate overall distribution of PAR in throughout the country, we collected and analyzed 226 soil samples from paddy and upland soil. The average content of total PAR in all samples was 236 ${\mu}g$ $kg^{-1}$, and the range was from 23.3 to 2, 834 ${\mu}g$ $kg^{-1}$. The overall distribution of PAR was found to be closely related to the pollution sources, the size of city and the type of industry.

  • PDF

Determination of Clotiazepam in the Plasma Using Gas Chromatography/Mass Spectrometry with an Ion-Trap Detector and its Application to Pharmacokinetics in Healthy Volunteers

  • Kwon, Oh-Seung;Kim, Seung-Yong;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.123-129
    • /
    • 2006
  • A method determining the plasma concentration of clotiazepam was developed by using gas chromatography/mass spectrometry with an ion-trap detector and was validated for applying pharmacokinetics to human volunteers orally taken 5 mg dose of clotiazepam. The detection limit was 1 ng/ml and the limit of quantitation was 5 ng/mt. Intraday reproducibility and accuracy bias % were less than 8.2 and 10.2% with inter-day variations for those being within 7.0 and 13.8%, respectively. The recovery of clotiazepam was higher than 87%. The principal pharmacokinetic parameters were determined from the plasma concentration-time plot by non-compartmental or two-compartmental analysis. In non-compartmental analysis, the elimination half-life of 10.4 hr and the area under the curve of 651.3 ng hr/ml were determined, and the maximal concentration (158.6 ng/ml) in the plasma was obtained at 0.56 hr post-dose. The developed method can be appropriate to apply pharmacokinetics and bioequivalence of clotiazepam.