• Title/Summary/Keyword: GBAS

Search Result 52, Processing Time 0.029 seconds

A Study on GBAS Curved Approach Flight Test in Taean Airport (태안비행장 GBAS Curved Approach 비행시험에 관한 연구)

  • Kim, Woo-Ri-Ul;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Due to the rapid increase in air traffic worldwide, ICAO has replaced the existing navigation equipment with equipment based on satellite navigation. As a part of that work, ICAO was planning to replace conventional takeoff and landing service using ILS with GBAS. Unlike ILS, GBAS which uses precision approach service inducing aircraft to airport and satellite based augmentation system providing precise position information service surrounding airport is capable of providing a required performance by only a system, regardless of the number of systems, and has an advantage that it is possible curved approach. In this paper, fuel reduction of ILS approach procedures and GBAS curved approach procedures is estimated and determined by flight test in Taean Airport.

A Development of System Design Approval Criteria for GBAS Operation in Korea (국내 GBAS 운용을 위한 시스템 설계 및 제작 승인 기준 개발)

  • Yun, Young-Sun;Kim, Joo-Kyoung;Cho, Jeong-Ho;Nam, Gi-Wook;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.625-632
    • /
    • 2013
  • Since GBAS is a navaid facility to provide precision approach service to aircrafts landing at airports, it must be approved by the air navigation service provider or the aviation regulator to be declared operational. However, Korea has no experience in developing or operating the system so there is no approval criteria for GBAS. In order to develop the criteria in case of the future GBAS procurement, Korea Aerospace Research Institute has been testing the installed commercial GBAS station, SLS-4000, in Gimpo International Airport. This paper summarizes the criteria development results focusing on the system design approval. The criteria have been outlined based on the other leading nations' cases and documentations and established in detail on the basis of the FAA SDA artifacts. Those will be directly used for GBAS approval procedure in Korea and are expected to be useful in system requirement analysis, design, development and artifact management in case of own GNSS-based navaid system development in the future.

Analysis of GPS Signal Environment for GBAS siting in Gimpo International Airport (GBAS 지상시스템 설치후보지 선정을 위한 김포국제공항의 GPS 신호환경 분석)

  • Jeong, Myeong-Sook;Choi, Chul Hee;Ko, Wan-Jin;Ko, Youri;Bae, Joongwon;Jun, Hyang-Sig;Kim, Dong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.70-78
    • /
    • 2013
  • Before GBAS ground systems is installed at the airport, the site survey is needed to determine the suitability of proposed GBAS candidate sites depending on the siting requirements. Therefore, analysis of GPS signal reception environment, one of the site survey steps, is required. In this paper, the number of visible satellites, GPS signal strength, multipath error, radio frequency interference and predicted availability were analyzed using the GPS data of Gimpo International Airport measured by PortaSAT equipments and the analysis results were represented.

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

A Validated Solution for the Threat of Ionosphere Spatial Anomalies to Ground Based Augmentation System Users

  • Pullen, Sam;Lee, Ji-Yun;Datta-Barua, Seebany;Park, Young-Shin;Zhang, Godwin;Enge, Per
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.9-14
    • /
    • 2006
  • This paper develops a complete methodology for the mitigation of ionosphere spatial anomalies by GBAS systems fielded in the Conterminous U.S. (CONUS). It defines an ionosphere anomaly threat model based on validated observations of unusual ionosphere events in CONUS impacting GBAS sites in the form of a linear ‘wave front’ of constant slope and velocity. It then develops a simulation-based methodology for selecting the worst-case ionosphere wave front impact impacting two satellites simultaneously for a given GBAS site and satellite geometry, taking into account the mitigating effects of code-carrier divergence monitoring within the GBAS ground station. The resulting maximum ionosphere error in vertical position (MIEV) is calculated and compared to a unique vertical alert limit, or $VAL_{H2,I}$, that applies to the special situation of worst-case ionosphere gradients. If MIEV exceeds $VAL_{H2,I}$ for one or more otherwise-usable subset geometries (i.e., geometries for which the 'normal' vertical protection level, or $VPL_{H0}$, is less than the 'normal' VAL), the broadcast ${\sigma}_{pr_{-}gnd}$ and/or ${\sigma}_{vig}$ must be increased such that all such potentially-threatening geometries have VPL$_{H0}$ > VAL and thus become unavailable. In addition to surveying all aspects of the methods used to generate the required ${\sigma}_{pr_{-}gnd}$ and ${\sigma}_{vig}$ inflation factors for CONUS GBAS sites, related methods for deriving similar results for GBAS sites outside CONUS are suggested.

  • PDF

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

European Augmentation Service - a GNSS Monitoring in South Europe Region

  • Gaglione, Salvatore;Pacifico, Armando;Vultaggio, Mario
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.165-170
    • /
    • 2006
  • In the Civil Aviation field, the international trend (through ICAO, EUROCONTROL) is to adopt one positioning system that allows to follow more flight phases. This will allow to release themselves by ground installations and optimize the traffic flows following the aRea Navigation (RNAV) concept. In order to realize this goal the European Scientific Community are focusing on Augmentation Systems based on Satellite infrastructure (SBAS - Satellite Based Augmentation System) and on Ground based ones (GBAS - Ground Based Augmentation System). The goal of this work is to present some results on SBAS and GBAS performances. Regarding SBAS, the Department of Applied Sciences of Parthenope University, after the acquisition of a Novatel OEM4 SBAS receiver has created a monitoring station that reflect as much as possible a standardized measure environment for EGNOS Data Collection Network (EDCN), established by Eurocontrol. The Department of Applied Science has decided to carry out a own monitoring survey to verify the performance of EGNOS that can be achieved in South Europe region, a zone not very covered by official (EDCN) monitoring network. Regarding GBAS, we started from a data set of measurements carried out at the GBAS of Milan-Linate airport where we work on a ground installation (GMS - Ground Monitoring Station) that supervises the GBAS signal and that represent, for our purposes, the Aircraft subsystem. So the set of data collected is to be considered in RTK mode and after the measures session we processed them with the software PEGASUS v 4.11. Both experiences give us the possibility to evaluate the GNSS1 performance that can be achieved.

  • PDF