• Title/Summary/Keyword: GABA-AT

Search Result 250, Processing Time 0.035 seconds

The effect of a finishing diet supplemented with γ-aminobutyric acids on carcass characteristics and meat quality of Hanwoo steers

  • Barido, Farouq Heidar;Lee, Chang Woo;Park, Yeon Soo;Kim, Do Yeong;Lee, Sung Ki
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.621-632
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of supplementation with rumen-protected γ-aminobutyric acid (GABA) on carcass characteristics and meat quality of Hanwoo steers. Methods: Eighteen Hanwoo steers with an average initial weight of 644.83±12.91 kg were randomly allocated into three different groups. Each group consisted of 6 animals that were treated with different diets formulated based on the animals' body weights. The control (C) group was fed a basal diet consisting of concentrate and rice straw with 74% total digestible nutrients (TDNs) and 12% crude protein (CP). The two other groups were treatment groups; one group was fed a basal diet (74% TDNs and 12% CP) supplemented with rumen-protected GABA at a dose of 150 mg/kg feed, and the other group was fed a basal diet (74% TDNs and 12% CP) supplemented with GABA at a dose of 300 mg/kg feed. Results: The GABA supplementation significantly contributed to better growth performance (p<0.05), especially the weight gain and average daily gain. It also contributed to the lower cooking loss (p<0.05), improvements in essential antioxidant enzymes and stable regulation of antioxidant activities in the longissimus lumborum of Hanwoo steers, as represented by the lower formation of malondialdehyde content within the meat, the inhibition of myoglobin oxidation indicated by the retention of the oxymyoglobin percentage, and the suppression of metmyoglobin percentage during cold storage (p<0.05). Conclusion: Higher doses of GABA may not significantly promote better animal performance and meat quality, suggesting that dietary supplementation with GABA at a dose of 100 ppm is sufficient to improve the meat quality of Hanwoo steers.

Effects of Germination in Brown Rice by Addition Chitosan/Glutamic acid (Chitosan/Glutamic acid 처리가 현미의 발아에 미치는 영향)

  • Jung Gyu-Ho;Park Nan-Young;Jang Sang-Moon;Lee Joo-Baek;Jeong Yong-Jin
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.538-543
    • /
    • 2004
  • To improve the levels of ${\gamma}$-aminobutyric acid (GABA) in germinated brown rice, chitosan and glutamic acid were treated during the brown rice germination. The GABA contents in germinated brown rices were 425.7 nmole/g and 637.0 nmole/g at germination temperature of $25^{\circ}C$ and germination time of 72 hrs. Response surface methodology(RSM) was used to monitor characteristics of germination from brown rices. As glutamic acid and chitosan concentration were increased, the GABA content was also increased. The ranges of optimum conditions were $105{\sim}160\;ppm$ in chitosan concentration and $200{\sim}290\;ppm$ in glutamic acid concentration. Predicted values at the optimized conditions were acceptable in comparison with experimental values.

Evaluation of γ-Aminobutyric Acid (GABA) Production by Lactic Acid Bacteria Using 5-L Fermentor (Lactic Acid Bacteria (LAB)와 5-L 발효기를 이용한 γ-Aminobutyric Acid 생산기술 개발)

  • Kim, Na Yeon;Kim, Ji Min;Ra, Chae Hun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.559-565
    • /
    • 2021
  • This study aimed to optimize gamma-aminobutyric acid (GABA) production by employing five strains of lactic acid bacteria (LAB) that were capable of high cell growth and GABA production using a modified synthetic medium. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. Lactobacillus plantarum SGL058 and Lactococcus lactis SGL027 were selected as the suitable strains for GABA production. The conditions of the carbon and nitrogen sources were determined as 5 g/l glucose (L. plantarum SGL058), 5 g/l lactose (L. lactis SGL027), 10 g/l yeast extract (L. plantarum SGL058), and 20 g/l yeast extract (L. lactis SGL027) for GABA production. The cell growth, monitored by optical density at 600 nm, was 5.93 for L. plantarum SGL058. This value was higher than the 3.04 produced by L. lactis SGL027 at 36 h using a 5-L fermenter. The highest concentration of GABA produced was 546.7 ㎍/ml by L. plantarum SGL058 and 404.6 ㎍/ml by L. lactis SGL027, representing a GABA conversion efficiency of (%, w/w) of 4.0% and 3.4%, respectively. The fermentation profiles of L. plantarum SGL058 and L. lactis SGL027 provide a basis for the utilization of LAB in GABA production using a basal synthetic medium.

Study on the Agonistic Effect of Chunmajeongal-tang Extract to the $GABA_A/benzodiazepine$ Receptor Complex (천마전헐탕의 $GABA_A/benzodiazepine$ 신경수용체(神經受容體) 효능활성(效能活性)에 관(關)한 연구(硏究))

  • Kim, Sung-Wook;Gong, Dae-Jong;An, Hyeon-Guk;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • Objective : This study was performed to investigate the agonistic activity of Chunmajeongal-tang extract to the $GABA_A/benzodiazepine$ receptor complex. Methods : Male mice and Sprague-Dawley rats were used for this experiment. Chunmajeongal-tang Prescription was extracted with 80% methanol, evaporated in vacuo and dried with freeze dryer. The agonistic activity to the GABA/ benzodiazepine receptor complex and GABA transaminase activity were measured in vitro. Results : Chunmajeongal-tang extract inhibited dose-dependently the binding of [3H]Ro15-1788, an antagonist on GABA/benzodiazepine receptor complex, in rat cerebral cortices, showing $82.4{\pm}4.12%$ inhibition at a dose of 5.0 mg/kg. This extract inhibited dose-dependently the binding of [3H]flunitrazepam, an agonist on GABA/benzodiazepine receptor complex, in rat cerebral cortices, showing $5.6{\pm}1.24%$ inhibition. Furthermore, Chunmajeongal-tang extract inhibited the binding of [3H]flunitrazepam in the presence of GABA/NaCI with $13.2{\pm}0.44%$ inhibition, its inhibitory effect exhibited a positive GABA shift, which means that this extract activates a GABAergic neurotransmission.

  • PDF

Enrichment of gamma-aminobutyric acid (GABA) in old antler extract fermented by Lactobacillus plantarum (녹각 추출액의 젖산발효를 통한 고농도 감마-아미노부티르산 생산 최적화)

  • Kwon, Soon Young;Lee, Sam Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • Optimization of the lactic acid fermentation process was carried out to produce an old antler extract fortified with ${\gamma}$-aminobutyric acid (GABA). An old antler extract (OAE; 5%, w/v) obtained using a herbal extractor showed the highest contents of solids (1.75%) and proteins ($980{\mu}g/mL$). It also showed the highest total amino acid contents of $13,659{\mu}g/mL$, with glycine, proline, and glutamine concentrations of 1,945, 3,405, and $1,641{\mu}g/mL$, respectively. For the over-production of GABA, OAE was fermented with Lactobacillus plantarum EJ2014 in the presence of 0.5%, 1.5% glucose, and 3.5% MSG at $30^{\circ}C$ for 7 days. The fermented OAE showed high viable cell count of $2.0{\times}10^8CFU/mL$, pH of 6.56 and 0.77% acidity after 7 days. In particular, the acidity was greatly decreased by fermentation for 3 days, and 1.4% GABA was produced by the efficient conversion of the substrate, mono sodium glutamate.

Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

  • Mabunga, Darine Froy N.;Gonzales, Edson Luck T.;Kim, Hee Jin;Choung, Se Young
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.268-274
    • /
    • 2015
  • ${\gamma}$-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice.

Effects of Molecular Weight and Chitosan Concentration on GABA (${\gamma}$-Aminobutyric Acid) Contents of Germinated Brown Rice (키토산의 분자량과 농도에 따른 발아현미내 GABA함량증진 효과)

  • Ko, Jung-A;Kim, Kyoung-Ok;Park, Hyun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.688-692
    • /
    • 2010
  • The aim of this study was to investigate the effects of molecular weight and concentrations of chitosan on the germination of brown rice. Brown rice was germinated at $30^{\circ}C$ for three days in various chitosan solutions. The germination rate of the brown rice increased with increasing concentrations of chitosan solution, and was higher in the chitosan solution than in water. GABA content increased with increasing germination time and chitosan solution concentration. As the molecular weight of the chitosan decreased, germination rate and GABA content increased in the brown rice. The GABA content of germinated brown rice using low molecular weight chitosan A in a 100 ppm solution was 5145.5 nmole/g. This is approximately a five times higher value than that of the water-germinated brown rice. Texture properties were enhanced in all the germinated brown rice samples in chitosan solution compared to the brown rice germinated in water. These results indicate that chitosan solution treatment can increase germination rate and GABA synthesis activity in brown rice during germination, and can also improve the texture properties of brown rice.

Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap (Lactobacillus brevis 균주를 이용한 다래 수액에서의 감마아미노뷰티르산 (γ-Aminobutyric Acid) 생산 최적화)

  • Jeong, Myeong-Kyo;Jeong, Ji-Hee;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.214-222
    • /
    • 2016
  • This study was performed to increase the production of ${\gamma}$-aminobutyric acid (GABA) by lactic acid bacteria (Lactobacillus brevis CFM11) and manufacture an optimum medium using the sap from Darae (Actinidia arguta). The concentration of GABA in the fermented sap was determined using GABase enzymatic assay. The isolated L. brevis CFM11 produced $605.67{\mu}g/mL$ GABA after incubation for 24 hours at $37^{\circ}C$ in broth. The sap was fermented by L. brevis CFM11 under optimum conditions of $32^{\circ}C$ for 48 hours with 40% rice bran extract, 1.0% sucrose, 3.0% soytone, 0.2% magnesium sulfate, and 0.2% MSG. The fermented sap produced a concentration of $1366.13{\mu}g/mL$ GABA. These results demonstrate that fermenting Darae sap using L. brevis CFM11 can produce a fermented sap beverage with increased GABA content.

Enhancement of γ-aminobutyric Acid Production by Combination of Barley Leaf and Corn Silk and Its Fermentation with Lactic Acid Bacteria (보리 잎과 옥수수 수염의 혼합과 유산균 발효를 이용한 γ-aminobutyric acid 생산 증진)

  • Kim, Hyung-Joo;Yoon, Young-Geol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.171-185
    • /
    • 2017
  • ${\gamma}$-aminobutyric acid (GABA) is a non-proteinogenic amino acid biosynthesized through decarboxylation of L-glutamic acid by glutamic acid decarboxylase. GABA is believed to play a role in defense against stress in plants. In humans, it is known as one of the major inhibitory neurotransmitters in the central nervous system, exerting anti-hypertensive and anti-diabetic effects. In this report, we wanted to enhance the GABA production from the barley leaf and corn silk by culturing them with lactic acid bacteria (LAB). The barley leaf and corn silk were mixed with various weight combinations and were fermented with Lactobacillus plantarum in an incubator at $30^{\circ}C$ for 48 h. After extracting the fermented mixture with hot water, we evaluated the GABA production by thin layer chromatography and GABase assay. We found that the fermented mixture of the barley leaf and corn silk in a nine to one ratio contained a higher level of GABA than other ratios, meaning that the intermixture and fermentation technique was effective in increasing the GABA content. We also tested several biological activities of the fermented extracts and found that the extracts of the fermented mixture showed improved antioxidant activities than the non-fermented extracts and no indication of cytotoxicity. These results suggest that our approach on combining the barley leaf and corn silk and its fermentation with LAB could lead to the possibility of the development of functional foods with high levels of GABA content and improved biological activities.

Changes in physical characteristics of white pan bread by addition of GABA rice bran and its extract (GABA 미강 및 미강추출물 첨가에 의한 식빵의 텍스처 및 저장성의 변화)

  • Oh, Su-Jin;Kwon, Young-Hoi;Shin, Hae-Hun;Kim, Hyun Soo;Choi, Hee-Don;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.614-620
    • /
    • 2018
  • A rice bran physically treated to increase the residual gamma amino butyric acid (GABA) content (200 mg/100 g) or its hot-water extract (200 mg/100 g) was added into a white pan bread, and changes in the physical properties including color, and volume and texture changes during storage at room temperature were examined. The addition of bran powders had negative effects on bread quality and storage stability whereas that of rice bran extract (RBE) improved the storage stability of bread. The lightness of bread crumbs decreased but the volume of bread slightly increased after addition of the RBE. The increase in crumb hardness during storage was retarded by the RBE addition. The residual concentration of GABA in bread was increased 38-fold when 20% of RBE was added. The addition of RBE to white pan bread improved the resistance to staling and health-promoting function because of GABA.