Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.022

Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice  

Mabunga, Darine Froy N. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Gonzales, Edson Luck T. (Department of Neuroscience, School of Medicine, and Neuroscience Research Center, SMART-IABS and KU Open Innovation Center, Konkuk University)
Kim, Hee Jin (Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University)
Choung, Se Young (Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.23, no.3, 2015 , pp. 268-274 More about this Journal
Abstract
${\gamma}$-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice.
Keywords
Sleep; ${\gamma}$-Aminobutyric acid; Rice germ ferment extracts; Caffeine; Hyperactivity; Anxiety;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahn, J. H., Im, C., Park, J. H., Choung, S. Y., Lee, S., Choi, J., Won, M. H. and Kang, I. J. (2014) Hypnotic effect of GABA from rice germ and/or tryptophan in a mouse model of pentothal-induced sleep. Food Sci. Biotechnol. 23, 1683-1688.   DOI
2 Akama, K., Kanetou, J., Shimosaki, S., Kawakami, K., Tsuchikura, S. and Takaiwa, F. (2009) Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic. Res. 18, 865-876.   DOI
3 Baldwin, H. A. and File, S. E. (1989) Caffeine-induced anxiogenesis: The role of adenosine, benzodiazepine and noradrenergic receptors. Pharmacol. Biochem. Behav. 32, 181-186.   DOI
4 Barone, J. J. and Roberts, H. R. (1996) Caffeine consumption. Food Chem. Toxicol. 34, 119-129.   DOI
5 Beckford K, Grimes, C. A. and Riddell, L. J. (2015) Australian children's consumption of caffeinated, formulated beverages: a crosssectional analysis. BMC Public Health 15, 70.   DOI
6 Caballero, M., Nunez, F., Ahern, S., Cuffi, M. L., Carbonell, L., Sanchez, S., Fernandez-Duenas, V. and Ciruela, F. (2011) Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Neurosci. Lett. 494, 44-48.   DOI
7 Concas, A., Porcu, P., Sogliano, C., Serra, M., Purdy, R. H. and Biggio, G. (2000) Caffeine-induced increases in the brain and plasma concentrations of neuroactive steroids in the rat. Pharmacol. Biochem. Behav. 66, 39-45.   DOI
8 dela Pena, I., Gonzales, E. L., de la Pena, J. B., Kim, B.-N., Han, D. H., Shin, C. Y. and Cheong, J. H. (2014) Individual differences in novelty-seeking behavior in spontaneously hypertensive rats: Enhanced sensitivity to the reinforcing effect of methylphenidate in the high novelty-preferring subpopulation. J. Neurosci. Methods. [Epub ahead of print]
9 Dunwiddie, T. V. and Masino, S. A. (2001) The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31-55.   DOI   ScienceOn
10 Estler, C. J. (1979) Influence of pimozide on the locomotor hyperactivity produced by caffeine. J. Pharm. Pharmacol. 31, 126-127.   DOI
11 French, S. A., Lin, B. H. and Guthrie, J. F. (2003) National trends in soft drink consumption among children and adolescents age 6 to 17 years: Prevalence, amounts, and sources, 1977/1978 to 1994/1998. J. Am. Diet. Assoc. 103, 1326-1331.   DOI
12 Fitt, E., Pell, D. and Cole, D. (2013) Assessing caffeine intake in the United Kingdom diet. Food Chem. 140, 421-426.   DOI
13 Frary, C. D., Johnson, R. K. and Wang, M. Q. (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J. Am. Diet. Assoc. 105, 110-113.
14 Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A. and Zvartau, E. E. (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51, 83-133.
15 Gottesmann, C. (2002) GABA mechanisms and sleep. Neuroscience 111, 231-239.   DOI   ScienceOn
16 Heckman, M. A., Weil, J. and De Mejia, E. G. (2010) Caffeine (1, 3, 7-trimethylxanthine) in Foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 75, R77-R87.   DOI
17 Hino, A., Adachi, H., Enomoto, M., Furuki, K., Shigetoh, Y., Ohtsuka, M., Kumagae, S.-I., Hirai, Y., Jalaldin, A., Satoh, A. and Imaizumi, T. (2007) Habitual coffee but not green tea consumption is inversely associated with metabolic syndrome: An epidemiological study in a general Japanese population. Diabetes Res. Clin. Pract. 76, 383-389.   DOI
18 Huang, Z. L., Qu, W. M., Eguchi, N., Chen, J. F., Schwarzschild, M. A., Fredholm, B. B., Urade, Y. and Hayaishi, O. (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8, 858-859.   DOI   ScienceOn
19 Jain, N. S., Hirani, K. and Chopde, C. T. (2005) Reversal of caffeine-induced anxiety by neurosteroid 3-alpha-hydroxy-5-alpha-pregnane-20-one in rats. Neuropharmacology 48, 627-638.   DOI
20 Ioannidis, K., Chamberlain, S. R. and Muller, U. (2014) Ostracising caffeine from the pharmacological arsenal for attention-deficit hyperactivity disorder-was this a correct decision? A literature review. J. Psychopharmacol. 28, 830-836.   DOI
21 Juhasz, G., Emri, Z., Kekesi, K. and Pungor, K. (1989) Local perfusion of the thalamus with GABA increases sleep and induces longlasting inhibition of somatosensory event-related potentials in cats. Neurosci. Lett. 103, 229-233.   DOI
22 Kardos, J. and Blandl, T. (1994) Inhibition of a gamma aminobutyric acid A receptor by caffeine. Neuroreport 5, 1249-1252.   DOI   ScienceOn
23 Kim, S., Oh, S., Jeong, M., Cho, S., Kook, M., Lee, S., Pyun, Y. and Lee, H. (2010) Sleep-inductive effect of GABA on the fermentation of mono sodium glutamate (MSG). Korean J. Food Sci. Technol. 42, 142-146
24 Komatsuzaki, N., Tsukahara, K., Toyoshima, H., Suzuki, T., Shimizu, N. and Kimura, T. (2007) Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 78, 556-560.   DOI
25 Landolt, H. P., Retey, J. V., Tonz, K., Gottselig, J. M., Khatami, R., Buckelmuller, I. and Achermann, P. (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29, 1933-1939.   DOI
26 Liu, Z. W. and Gao, X. B. (2007) Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J. Neurophysiol. 97, 837-848.   DOI
27 Nakamura, H., Takishima, T., Kometani, T. and Yokogoshi, H. (2009) Psychological stress-reducing effect of chocolate enriched with ${\gamma}$-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A. Int. J. Food Sci. Nutr. 60, 106-113.   DOI
28 Ma, Y., Ma, H., Eun, J. S., Nam, S. Y., Kim, Y. B., Hong, J. T., Lee, M. K. and Oh, K. W. (2009) Methanol extract of Longanae Arillus augments pentobarbital-induced sleep behaviors through the modification of GABAergic systems. J. Ethnopharmacol. 122, 245-250.   DOI
29 Mathias, S., Wetter, T. C., Steiger, A. and Lancel, M. (2001) The GABA uptake inhibitor tiagabine promotes slow wave sleep in normal elderly subjects. Neurobiol. Aging 22, 247-253.   DOI
30 Mitchell, D. C., Knight, C. A., Hockenberry, J., Teplansky, R. and Hartman, T. J. (2014) Beverage caffeine intakes in the US. Food Chem. Toxicol. 63, 136-142.   DOI
31 Nakamura, T., Matsubayashi, T., Kamachi, K., Hasegawa, T., Ando, Y. and Omori, M. (2000) ${\gamma}$-Aminobutyric acid (GABA)-rich Chlorella depresses the elevation of blood pressure in spontaneously hypertensive rats (SHR). Nippon Nogeikagaku Kaishi 74, 907-909.
32 Narayan, V. S. and Nair, P. M. (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 29, 367-375.   DOI
33 Oh, C. H. and Oh, S. H. (2004) Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 7, 19-23.   DOI
34 Saikusa, T., Horino, T. and Mori, Y. (1994) Accumulation of ${\gamma}$-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotechnol. Biochem. 58, 2291-2292.   DOI
35 Oh, S. H. (2003) Stimulation of gamma-aminobutyric acid synthesis activity in brown rice by a chitosan/glutamic acid germination solution and calcium/calmodulin. J. Biochem. Mol. Biol. 36, 319-325.   DOI
36 Ojima, K., Matsumoto, K., Tohda, M. and Watanabe, H. (1995) Hyperactivity of central noradrenergic and CRF systems is involved in social isolation-induced decrease in pentobarbital sleep. Brain Res. 684, 87-94.   DOI   ScienceOn
37 Pandolfo, P., Machado, N. J., Kofalvi, A., Takahashi, R. N. and Cunha, R. A. (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur. Neuropsychopharmacol 23, 317-328.   DOI
38 Shirlow, M. and Mathers, C. (1985) A study of caffeine consumption and symptoms: indigestion, palpitations, tremor, headache and insomnia. Int. J. Epidermiol. 14, 239-248.   DOI
39 Skoog, K. M., Cain, S. T. and Nemeroff, C. B. (1986) Centrally administered neurotensin suppresses locomotor hyperactivity induced by d-amphetamine but not by scopolamine or caffeine. Neuropharmacol. 25, 777-782.   DOI
40 Smit, H. J. and Rogers, P. J. (2002) Effects of 'energy' drinks on mood and mental performance: critical methodology. Food Qual. Prefer. 13, 317-326.   DOI
41 Smith, A. (2002) Effects of caffeine on human behavior. Food Chem. Toxicol. 40, 1243-1255.   DOI
42 Watanabe, M., Maemura, K., Kanbara, K., Tamayama, T. and Hayasaki, H. (2002) GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213, 1-47.   DOI
43 Tian, J., Yong, J., Dang, H. and Kaufman, D. L. (2011) Oral GABA treatment downregulates inflammatory responses in a mouse model of rheumatoid arthritis. Autoimmunity 44, 465-470.   DOI
44 Turek, F. W. and Losee-Olson, S. (1986) A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321, 167-186.   DOI
45 Vuillermot, S., Joodmardi, E., Perlmann, T., Ove Ogren, S., Feldon, J. and Meyer, U. (2011) Schizophrenia-relevant behaviors in a genetic mouse model of constitutive Nurr1 deficiency. Genes Brain Behav. 10, 589-603.   DOI
46 Westerterp-Plantenga, M., Diepvens, K., Joosen, A. M. C. P., Berube-Parent, S. and Tremblay, A. (2006) Metabolic effects of spices, teas, and caffeine. Physiol. Behav. 89, 85-91.   DOI
47 Youngstedt, S. D., O'Connor, P. J., Crabbe, J. B. and Dishman, R. K. (1998) Acute exercise reduces caffeine-induced anxiogenesis. Med. Sci. Sports Exerc. 30, 740-745.   DOI