• Title/Summary/Keyword: GA steel

Search Result 134, Processing Time 0.029 seconds

Clinical management of amelogenesis imperfecta in primary dentition

  • Kim, Ga-Yeong
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.12 no.2
    • /
    • pp.31-38
    • /
    • 2003
  • Amelogenesis imperfecta patients suffered common clinical problems of poor esthetics, teeth sensitivity, and loss of occlusal vertical dimension. Amelogenesis imperfecta is a group of inherited disorders primarily affecting dental enamel. Variants of amelogenesis imperfecta generally classified hypoplastic, hypocalcified, or hypomaturation types based on the primary enamel defects. The mildest problems were found in the pitted hypoplastic type whereas the most severe problems were encountered in the hypocalcified type amelogenesis imperfecta. Management stragies include composite resin veneer and jacket crowns for anterior teeth as well as steel crowns for posterior teeth. Knowledge of the clinical features and dental complications of each variants if amelogenesis impecta helps in the diagnosis of the condition and allows institution of early preventive measures. The objective of this paper is to provide a review of the current concepts of the wide spectrum of etiological factors involved in the pathogenesis of this significance clinical entity in the primary dentition.

  • PDF

Design of composite channel section beam for optimal dimensions (최적 단면 치수를 가지는 복합재료 U-Beam의 설계)

  • 이헌창;전흥재;박지상;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.276-279
    • /
    • 2002
  • A problem formulation and solution for design optimization of laminated composite channel section beam is presented in this study. The objective of this study is the determination of optimum section dimensions of composite laminated channel section beam which has equivalent flexural rigidities to flexural rigidities of steel channel section beam. The analytical model is based on the laminate theory and accounts for the material coupling for arbitrary laminate stacking sequence configuration. The model is used to determine the optimal section dimensions of composite channel section beam. The web height, flange width and thickness of the beam are treated as design variables. The solutions described are found using a global search algorithm, Genetic Algorithms (GA).

  • PDF

Improvement of Thickness Accuracy in Hot-Rolling Mill Using Neural Network and Genetic Algorithm (신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상)

  • 손준식;김일수;최승갑;이덕만
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.41-46
    • /
    • 2002
  • In the face of global competition, the requirements fer the continuously increasing productivity, flexibility and quality (dimensional accuracy, mechanical properties and surface properties) have imposed a major change on steel manufacturing industries. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. To achieve this objectives, a new loaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.

  • PDF

Using genetic algorithms method for the paramount design of reinforced concrete structures

  • Xu, Chuanhua;Zhang, Xiliang;Haido, James H.;Mehrabi, Peyman;Shariati, Ali;Mohamad, Edy Tonnizam;Hoang, Nguyen;Wakil, Karzan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.503-513
    • /
    • 2019
  • Genetic Algorithms (GAs) have found the best design for reinforced concrete frames. The design of the optimum beam sections by GAs has been unified. The process of the optimum-design sections has satisfied axial, flexural, shear and torsion necessities based on the designing code. The frames' function has contained the function of both concrete and reinforced steel besides the function of the frames' formwork. The results have revealed that limiting the dimension of frame-beam with the dimension of frame-column have increased the optimum function of the structure, thereby reducing the reanalysis requirement for checking the optimum-designed structures through GAs.

A Study on Iron Manufacturing and Technology through Analysis Reports of Iron artifacts in the Baekje Area (유물분석 자료를 통한 백제지역의 제철과 철기 제작기술 연구)

  • Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.335-343
    • /
    • 2014
  • This study classified the result of non-metallic inclusion analysis and result of microstructure investigation on the ironware excavated in the Baekje region into Han River, Geum River, and Yeongsan River to estimate the iron making temperature and study the characteristics of regional and temporal characteristics of the heat treatment technology and steel making technology. Regardless of era, bloom iron and sponge iron are judged to be the major method for making as a directreduction process in all three regions. The result of the reinterpretation of the non-metallic inclusion by the oxide ternary constitutional diagram suggest that the temperature inside of the furnace is estimated to be between $1,100{\sim}1,300^{\circ}C$ while making the steel. The magnetic iron ores are the major raw material of steel ore and irons with high $TiO_2$ are estimated to use iron sands. Ironware with $CaO/SiO_2$ rate higher than 0.4% are considered to have artificially added the flux of calcareous materials. It was found that the iron making method is the solid caburizing-steel which caburizes low-carbon steels by the CO gas and $CO_2$ gas created when heating the forging furnace with charcoal. Also, the ironware manufacturers in the Baekje during 3rd century recognized the heat treatment technology as they performed carburizing process and quenching to intentionally increase the strength of necessary parts.

Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel (핫스탬핑용 30MnB5강의 템퍼링 조건에 따른 미세조직 및 기계적 물성 연구)

  • Jeong, Junyeong;Park, Sang-Cheon;Shin, Ga-Young;Lee, Chang Wook;Kim, Tae-Jeong;Choi, Min-Su
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.787-795
    • /
    • 2018
  • The effects of tempering condition on the microstructure and mechanical properties of 30MnB5 hot stamping steel were investigated in this study. Before the tempering, hot-stamped 30MnB5 steel was composed of only ${\alpha}^{\prime}$-martensite microstructure without precipitates. After the tempering at $180^{\circ}C$ for 120 min, nano-sized ${\varepsilon}$-carbides were precipitated in the ${\alpha}^{\prime}$-martensite laths. After tempering at $250^{\circ}C$ for 60 min, cementite was precipitated along the ${\alpha}^{\prime}$-martensite lath boundaries. The cementite was also observed in the specimens tempered at $350^{\circ}C$ for 30 min and $450^{\circ}C$ for 6 min, respectively. The globular ${\alpha}$-ferrite appeared at $350^{\circ}C-30min$ tempering, and the volume fraction of ${\alpha}$-ferrite increased when the tempering temperature was increased. The yield strength increased after tempering, and it reached a peak with the tempering condition of $180^{\circ}C-120min$, due to the nano-sized precipitates in the ${\alpha}^{\prime}$-martensite lath. After the tempering, the steel's ultimate tensile strength (UTS) was decreased due to the reduction in dislocation density and C segregation to lath boundaries. The highest elongation was observed at the $180^{\circ}C-120min$ tempering condition, due to the reduction of residual stress, and the lack of precipitates along the lath boundaries. The $180^{\circ}C-120min$ tempering condition was considered to have outstanding crash performance, according to toughness and anti-intrusion calculation results. In drop tower crash tests, the 30MnB5 door impact beam tempered at $180^{\circ}C$ for 120 min showed better crash performance compared to a 22MnB5 door impact beam.

Shielding Analysis of the Material and Thickness of Syringe Shield on the Radionuclide (방사성 핵종별 주사기 차폐기구의 재질 및 두께에 대한 차폐분석)

  • Cho, Yong-In;Kim, Chang-Soo;Kang, Se-Sik;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.282-288
    • /
    • 2015
  • A monte carlo simulation about shielding material and thickness of the syringe shield for radiation shield was performed. As a result of analysis, high atomic number materials such as tungsten, lead and bismuth have the highest shielding effect. However, $^{18}F$, $^{67}Ga$ and $^{111}In$ show high energy distribution in the region with thin shielding thickness. As the thickness of shielding materials increased, the energy distribution decreased due to reduction of ${\gamma}$-ray. In the case of low atomic number materials, they, showed energy distribution from highest to lowest, were barium sulfate, steel, stainless, iron and copper. Aluminum, plastic, concrete and water showed diverse aspect. they showed relatively high energy distribution because of increased ${\gamma}$-ray that penetrate the shield.

Optimizing reinforced concrete beams under different load cases and material mechanical properties using genetic algorithms

  • Zhu, Enqiang;Najem, Rabi Muyad;Dinh-Cong, Du;Shao, Zehui;Wakil, Karzan;Ho, Lanh Si;Alyousef, Rayed;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.467-485
    • /
    • 2020
  • Genetic Algorithm (GA) is a meta-heuristic algorithm which is capable of providing robust solutions for optimal design of structural components, particularly those one needs considering many design requirements. Hence, it has been successfully used by engineers in the typology optimization of structural members. As a novel approach, this study employs GA in order for conducting a case study with high constraints on the optimum mechanical properties of reinforced concrete (RC) beams under different load combinations. Accordingly, unified optimum sections through a computer program are adopted to solve the continuous beams problem. Genetic Algorithms proved in finding the optimum resolution smoothly and flawlessly particularly in case of handling many complicated constraints like a continuous beam subjected to different loads as moments shear - torsion regarding the curbs of design codes.

A Study on the Adaptive Reuse Techniques through the History of Buildings in the Historic Urban Area - Focused on the Deep and Narrow Lots of Nammun-ro 2Ga, Cheongju - (역사적 도심 내 건축물의 이력을 통해 본 재생기법에 관한 연구 -청주시 남문로 2가동의 세장형 필지를 대상으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • This study is intended to derive the adaptive reuse techniques through the history and aspects of new construction, extension, repair, and other works, limited to the deep and narrow lots facing Seongan-gil and Nammun-gil in Nammun-ro 2 ga of Cheongju, the historic urban area. The results are as follows. 1) In the case of newly built reinforced concrete buildings, the central part of the top floor of the residence or all floors are opened to the open space(void) to facilitate lighting and ventilation. This is developed as a convection phenomenon due to the temperature difference from the slits between buildings, which affects the entire air flow of the block. 2) The buildings of extension and repair are composed of two-story masonry or steel frame, both the front store facing the road and the house on the back, but it looks like one because it is in contact with each other. If only a small gap between the front and rear buildings is restored to an external space or a space equipped with sun light, a small breath can be provided in lighting and ventilation. 3) The existing two-story wooden stores and houses have lost their external space due to repairs. With minimal intervention to restore the small courtyard, slits, and space under the eaves, it will not only improve lighting and ventilation, but also create a unique appearance as a segment of the elongated store.

A Study on the Multi-Level Artificial Neural Networks Using Genetic Algorithm for Preliminary Structural Design (예비 구조설계를 위한 유전알고리즘을 이용한 다단계 인공신경망에 관한 연구)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.443-452
    • /
    • 2004
  • Recently, the Artificial Neural Network(ANN) which can organize complex non-linear problems by effectively applying the parallel computational model that is similar to the human brain, was adopted in the wide department of technology and resulted in many successful applications. In this study, a more appropriate formal method is suggested for the preliminary structural design stage controlled merely by the designer's experience and intuition. To do so, this study proposes a multi-level ANN according to the general progressive structural design procedure, using Back-Propagation Algorithm (BP) and Genetic Algorithm (GA) for the ANN learning. The preliminary structural design of cable-stayed bridges was applied to illustrate the applicability of the study formulated as stated above, and the results of two different learning methods were compared.