DOI QR코드

DOI QR Code

Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel

핫스탬핑용 30MnB5강의 템퍼링 조건에 따른 미세조직 및 기계적 물성 연구

  • Jeong, Junyeong (Research & Development Division, Hyundai Motor Company) ;
  • Park, Sang-Cheon (Research & Development Division, Hyundai Motor Company) ;
  • Shin, Ga-Young (Research & Development Division, Hyundai Motor Company) ;
  • Lee, Chang Wook (Research & Development Division, Hyundai Motor Company) ;
  • Kim, Tae-Jeong (Research & Development Division, Hyundai Motor Company) ;
  • Choi, Min-Su (Research & Development Division, Hyundai Motor Company)
  • 정준영 (현대자동차연구개발본부) ;
  • 박상천 (현대자동차연구개발본부) ;
  • 신가영 (현대자동차연구개발본부) ;
  • 이창욱 (현대자동차연구개발본부) ;
  • 김태정 (현대자동차연구개발본부) ;
  • 최민수 (현대자동차연구개발본부)
  • Received : 2018.08.21
  • Accepted : 2018.09.12
  • Published : 2018.11.05

Abstract

The effects of tempering condition on the microstructure and mechanical properties of 30MnB5 hot stamping steel were investigated in this study. Before the tempering, hot-stamped 30MnB5 steel was composed of only ${\alpha}^{\prime}$-martensite microstructure without precipitates. After the tempering at $180^{\circ}C$ for 120 min, nano-sized ${\varepsilon}$-carbides were precipitated in the ${\alpha}^{\prime}$-martensite laths. After tempering at $250^{\circ}C$ for 60 min, cementite was precipitated along the ${\alpha}^{\prime}$-martensite lath boundaries. The cementite was also observed in the specimens tempered at $350^{\circ}C$ for 30 min and $450^{\circ}C$ for 6 min, respectively. The globular ${\alpha}$-ferrite appeared at $350^{\circ}C-30min$ tempering, and the volume fraction of ${\alpha}$-ferrite increased when the tempering temperature was increased. The yield strength increased after tempering, and it reached a peak with the tempering condition of $180^{\circ}C-120min$, due to the nano-sized precipitates in the ${\alpha}^{\prime}$-martensite lath. After the tempering, the steel's ultimate tensile strength (UTS) was decreased due to the reduction in dislocation density and C segregation to lath boundaries. The highest elongation was observed at the $180^{\circ}C-120min$ tempering condition, due to the reduction of residual stress, and the lack of precipitates along the lath boundaries. The $180^{\circ}C-120min$ tempering condition was considered to have outstanding crash performance, according to toughness and anti-intrusion calculation results. In drop tower crash tests, the 30MnB5 door impact beam tempered at $180^{\circ}C$ for 120 min showed better crash performance compared to a 22MnB5 door impact beam.

Keywords

References

  1. R. Kuziak, R. Kawalla, and S. Waengler, Arch. Civ. Mech. Eng. 8, 103 (2008). https://doi.org/10.1016/S1644-9665(12)60197-6
  2. O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).
  3. H. S. Lee, B. Hwang, S. Lee, C. G. Lee, and S.-J. Kim, Kor. Inst. Met. & Mater. 42, 117 (2004).
  4. J. Lee, M. Lee, H. Do, S. Kim, and N. Kang, Korean J. Met. Mater. 52, 113 (2014). https://doi.org/10.3365/KJMM.2014.52.2.113
  5. D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim, Metall. Mater. Trans. A 41A, 397 (2010).
  6. J.-E. Jin and Y.-K. Lee, Acta Mater. 60, 1680 (2012). https://doi.org/10.1016/j.actamat.2011.12.004
  7. J. Lee, T. Lee, Y. J. Kwon, D.-J. Mun, J.-Y. Yoo, and C. S. Lee, Met. Mater. Int. 22, 364 (2016). https://doi.org/10.1007/s12540-016-5631-7
  8. W. Gan, S. S. Babu, N. Kapustka, and R. H. Wagoner, Metall. Mater. Trans. A 37A, 3221 (2006).
  9. S. Y. Kang, Korean J. Met. Mater. 50, 883 (2012).
  10. M.-G. Lee, S.-J. Kim, H. N. Han, and W. C. Jeong, Int. J. Mech. Sci. 51, 888 (2009). https://doi.org/10.1016/j.ijmecsci.2009.09.030
  11. H. Karbasian and A. E. Tekkaya, J. Mater. Proc. Tech. 210, 2103 (2010). https://doi.org/10.1016/j.jmatprotec.2010.07.019
  12. M. Nikravech, M. Naderi, and G. H. Akbari, Mater. Sci. Eng. A 540, 24 (2012). https://doi.org/10.1016/j.msea.2012.01.018
  13. K. E. Bae, J.-K. Park, W.-S. Lee, and Y. J. Baik, Korean J. Met. Mater. 54, 8 (2016). https://doi.org/10.3365/KJMM.2016.54.1.08
  14. C. W. Lee, D. W. Fan, I. R. Sohn, S.-J. Lee, and B. C. De Cooman, Metall. Mater. Trans. A 43A, 5122 (2012).
  15. J. Wang, C. Enloe, J. Singh, and C. Horvath, SAE Int. J. Mater. Manf. 9, 488 (2016). https://doi.org/10.4271/2016-01-0359
  16. H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, and D. Wang, Mater. Sci. Eng. A 622, 61 (2015). https://doi.org/10.1016/j.msea.2014.11.005
  17. W. Crafts and J. L. Lamont, Trans. AIME 172, 222 (1947).
  18. G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999). https://doi.org/10.1016/S0921-5093(99)00288-9
  19. D. C. Saha, E. Biro, A. P. Gerlich, and Y. Zhou, Mater. Sci. Eng. A 673, 467 (2016). https://doi.org/10.1016/j.msea.2016.07.092
  20. R. M. Horn and R. O. Ritchie, Metall. Trans. A 9A, 1039 (1978).
  21. M. Sarikaya, A. K. Jhingan, and G. Thomas, Metall. Trans. A 14A, 1121 (1983).
  22. G. Fourlaris and A. Clough, Mater. Sci. Tech. 33, 1964 (2017). https://doi.org/10.1080/02670836.2017.1342018
  23. J. Cheng, A. Zhao, Y. Chen, R. Dong, and Y. Huang, Acta Metall. Sin. 49, 137 (2013). https://doi.org/10.3724/SP.J.1037.2012.00451
  24. H. Jarvinen, M. Honkanen, M. Jarvenpaa, and P. Peura, J. Mater. Proc. Tech. 252, 90 (2018). https://doi.org/10.1016/j.jmatprotec.2017.08.027
  25. M. Naderi, M. Abbasi, and A. Saeed-Akbari, Metall. Mater. Trans. A 44A, 1852 (2013).
  26. H. Jarvinen, M. Isakov, T. Nyyssonen, M. Jarvenpaa, and P. Peura, Mater. Sci. Eng. A 676, 109 (2016). https://doi.org/10.1016/j.msea.2016.08.096
  27. G. R. Speich and W. C. Leslie, Metall. Trans. 3, 1043 (1972). https://doi.org/10.1007/BF02642436
  28. M. Jung, S.-J. Lee, and Y.-K. Lee, Metall. Mater. Trans. A 40A, 551 (2009).
  29. R. N. Caron and G. Krauss, Metall. Trans. 3, 2381 (1972). https://doi.org/10.1007/BF02647041
  30. T. Swarr and G. Krauss, Metall. Trans. A 7A, 41 (1976).
  31. A. A. Sayed and Sh. Kheirandish, Mater. Sci. Eng. A 532, 21 (2012). https://doi.org/10.1016/j.msea.2011.10.056
  32. P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari, and N. Parvin, Mater. Sci. Eng. A 518, 1 (2009). https://doi.org/10.1016/j.msea.2009.05.046
  33. J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, Acta Mater. 78, 369 (2014). https://doi.org/10.1016/j.actamat.2014.07.005
  34. R. W. K. Honeycombe and H. K. D. H. Bhadeshia, Steels Microstructure and Properties, 2nd ed., pp 72, Edward, London (1995).
  35. A. Salemi and A. Abdoll-zadeh, Mater. Charact. 59, 484 (2008). https://doi.org/10.1016/j.matchar.2007.02.012
  36. W.-S. Lee and T.-T. Su, J. Mater. Proc. Tech. 87, 198 (1999). https://doi.org/10.1016/S0924-0136(98)00351-3