Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.11.787

Effects of Tempering Condition on the Microstructure and Mechanical Properties of 30MnB5 Hot-Stamping steel  

Jeong, Junyeong (Research & Development Division, Hyundai Motor Company)
Park, Sang-Cheon (Research & Development Division, Hyundai Motor Company)
Shin, Ga-Young (Research & Development Division, Hyundai Motor Company)
Lee, Chang Wook (Research & Development Division, Hyundai Motor Company)
Kim, Tae-Jeong (Research & Development Division, Hyundai Motor Company)
Choi, Min-Su (Research & Development Division, Hyundai Motor Company)
Publication Information
Korean Journal of Metals and Materials / v.56, no.11, 2018 , pp. 787-795 More about this Journal
Abstract
The effects of tempering condition on the microstructure and mechanical properties of 30MnB5 hot stamping steel were investigated in this study. Before the tempering, hot-stamped 30MnB5 steel was composed of only ${\alpha}^{\prime}$-martensite microstructure without precipitates. After the tempering at $180^{\circ}C$ for 120 min, nano-sized ${\varepsilon}$-carbides were precipitated in the ${\alpha}^{\prime}$-martensite laths. After tempering at $250^{\circ}C$ for 60 min, cementite was precipitated along the ${\alpha}^{\prime}$-martensite lath boundaries. The cementite was also observed in the specimens tempered at $350^{\circ}C$ for 30 min and $450^{\circ}C$ for 6 min, respectively. The globular ${\alpha}$-ferrite appeared at $350^{\circ}C-30min$ tempering, and the volume fraction of ${\alpha}$-ferrite increased when the tempering temperature was increased. The yield strength increased after tempering, and it reached a peak with the tempering condition of $180^{\circ}C-120min$, due to the nano-sized precipitates in the ${\alpha}^{\prime}$-martensite lath. After the tempering, the steel's ultimate tensile strength (UTS) was decreased due to the reduction in dislocation density and C segregation to lath boundaries. The highest elongation was observed at the $180^{\circ}C-120min$ tempering condition, due to the reduction of residual stress, and the lack of precipitates along the lath boundaries. The $180^{\circ}C-120min$ tempering condition was considered to have outstanding crash performance, according to toughness and anti-intrusion calculation results. In drop tower crash tests, the 30MnB5 door impact beam tempered at $180^{\circ}C$ for 120 min showed better crash performance compared to a 22MnB5 door impact beam.
Keywords
hot stamping; 30MnB5 steel; tempering; martensite; cementite; carbide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Krauss, Mater. Sci. Eng. A 273-275, 40 (1999).   DOI
2 D. C. Saha, E. Biro, A. P. Gerlich, and Y. Zhou, Mater. Sci. Eng. A 673, 467 (2016).   DOI
3 R. M. Horn and R. O. Ritchie, Metall. Trans. A 9A, 1039 (1978).
4 M. Sarikaya, A. K. Jhingan, and G. Thomas, Metall. Trans. A 14A, 1121 (1983).
5 G. Fourlaris and A. Clough, Mater. Sci. Tech. 33, 1964 (2017).   DOI
6 J. Cheng, A. Zhao, Y. Chen, R. Dong, and Y. Huang, Acta Metall. Sin. 49, 137 (2013).   DOI
7 H. Jarvinen, M. Honkanen, M. Jarvenpaa, and P. Peura, J. Mater. Proc. Tech. 252, 90 (2018).   DOI
8 M. Naderi, M. Abbasi, and A. Saeed-Akbari, Metall. Mater. Trans. A 44A, 1852 (2013).
9 H. Jarvinen, M. Isakov, T. Nyyssonen, M. Jarvenpaa, and P. Peura, Mater. Sci. Eng. A 676, 109 (2016).   DOI
10 G. R. Speich and W. C. Leslie, Metall. Trans. 3, 1043 (1972).   DOI
11 M. Jung, S.-J. Lee, and Y.-K. Lee, Metall. Mater. Trans. A 40A, 551 (2009).
12 R. N. Caron and G. Krauss, Metall. Trans. 3, 2381 (1972).   DOI
13 T. Swarr and G. Krauss, Metall. Trans. A 7A, 41 (1976).
14 A. A. Sayed and Sh. Kheirandish, Mater. Sci. Eng. A 532, 21 (2012).   DOI
15 P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari, and N. Parvin, Mater. Sci. Eng. A 518, 1 (2009).   DOI
16 J. Han, S.-J. Lee, J.-G. Jung, and Y.-K. Lee, Acta Mater. 78, 369 (2014).   DOI
17 J. Lee, M. Lee, H. Do, S. Kim, and N. Kang, Korean J. Met. Mater. 52, 113 (2014).   DOI
18 R. Kuziak, R. Kawalla, and S. Waengler, Arch. Civ. Mech. Eng. 8, 103 (2008).   DOI
19 O. Bouaziz, H. Zurob, and M. Huang, Steel Res. Int. 84, 937 (2013).
20 H. S. Lee, B. Hwang, S. Lee, C. G. Lee, and S.-J. Kim, Kor. Inst. Met. & Mater. 42, 117 (2004).
21 D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim, Metall. Mater. Trans. A 41A, 397 (2010).
22 J.-E. Jin and Y.-K. Lee, Acta Mater. 60, 1680 (2012).   DOI
23 J. Lee, T. Lee, Y. J. Kwon, D.-J. Mun, J.-Y. Yoo, and C. S. Lee, Met. Mater. Int. 22, 364 (2016).   DOI
24 H. Karbasian and A. E. Tekkaya, J. Mater. Proc. Tech. 210, 2103 (2010).   DOI
25 W. Gan, S. S. Babu, N. Kapustka, and R. H. Wagoner, Metall. Mater. Trans. A 37A, 3221 (2006).
26 S. Y. Kang, Korean J. Met. Mater. 50, 883 (2012).
27 M.-G. Lee, S.-J. Kim, H. N. Han, and W. C. Jeong, Int. J. Mech. Sci. 51, 888 (2009).   DOI
28 M. Nikravech, M. Naderi, and G. H. Akbari, Mater. Sci. Eng. A 540, 24 (2012).   DOI
29 K. E. Bae, J.-K. Park, W.-S. Lee, and Y. J. Baik, Korean J. Met. Mater. 54, 8 (2016).   DOI
30 C. W. Lee, D. W. Fan, I. R. Sohn, S.-J. Lee, and B. C. De Cooman, Metall. Mater. Trans. A 43A, 5122 (2012).
31 J. Wang, C. Enloe, J. Singh, and C. Horvath, SAE Int. J. Mater. Manf. 9, 488 (2016).   DOI
32 H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, and D. Wang, Mater. Sci. Eng. A 622, 61 (2015).   DOI
33 W. Crafts and J. L. Lamont, Trans. AIME 172, 222 (1947).
34 R. W. K. Honeycombe and H. K. D. H. Bhadeshia, Steels Microstructure and Properties, 2nd ed., pp 72, Edward, London (1995).
35 A. Salemi and A. Abdoll-zadeh, Mater. Charact. 59, 484 (2008).   DOI
36 W.-S. Lee and T.-T. Su, J. Mater. Proc. Tech. 87, 198 (1999).   DOI