• Title/Summary/Keyword: G-Rb₁/G-Rg₁

Search Result 132, Processing Time 0.029 seconds

Effects of Ginsenosides Injected Intrathecally or Intracerebroventricularly on Antinociception Induced by D-$Pen^{2,5}$-enkephalin Administered Intracerebroventricularly in the Mouse

  • Hong-Won Suh;Don
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.109-114
    • /
    • 1997
  • The effect of total saponin fraction of Ginseng injected intrathecally (i.1.) or in- tracerebroventricularly (i.c.v.) on the antinociception induced by D-$Pen^{2,5}$- enkephalin (DPDPE) ad ministered i.c.v. was studied in ICR mice in the present study. The antinociception was assessed by the tail-flick test. Total saponin fraction at doses 0.1 to 1.0 $\mu\textrm{g}$, which administered i.t. Alone did not affect the latencies of tail-flick threshold, attenuated dose-dependently the inhibition of the tail-flick response induced by i.c.v. administered DPDPE (10 $\mu\textrm{g}$). However, total saponin fraction at doses 1 to 20 $\mu\textrm{g}$, which administered i.c.v. Alone did not affect the latencies of the tail-flick response, did not affect i.c.v. administered DPDPE (10 $\mu\textrm{g}$)-induced antinociception. The duration of antagonistic action of total saponin fraction against DPDPE-induced antlnociception was lasted at least for 6 hrs. Various doses of ginsenosides Rd, but not $\Rb_2$, Rc, Rg1, and $\Rb_1$ and Re, injected i.t. Dose-dependently attenuated antinociception induced by DPDPE administered i.c.v. Our results indicate that total saponin fraction injected spinally appears to have antagonistic action against the antinociception induced by supraspinally applied DPDPE. Ginsenoside Rd appears to be responsible for blocking j.c.v. administered DPDPE-induced antinociception. On the other hand, total ginseng fraction, at supraspinal sites, may not have an antagonistic action against the antinociception induced by DPDPE.

  • PDF

Effects on Ginseng Growth and Ginsenoside Content in ICT-based Process Cultivation and Conventional Cultivation (ICT 기반의 공정재배와 관행재배에 있어서 인삼 생장 및 진세 노사이드 함량에 미치는 영향)

  • Kwang Jin Chang;Yeon Bok Kim;Hyun Jung Koo;Hyun Jin Baek;Eui Gi Hong;Su Bin Lee;Jeei Hye Choi;Hyo Yeon Son;Tae Young Kim;Dong Hyun Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.2
    • /
    • pp.12-19
    • /
    • 2023
  • This study conducted an experiment with EC 1.0ms/cm ratio and excellent soil conditions for germination in ICT-based ginseng process cultivation. The first growth survey was conducted before transplantation of ginseng 1-year roots grown by seeding ginseng in the process cultivation, conventional cultivation and a second growth comparison survey was conducted after 3 months of growth. In the results, it was confirmed that ginseng grown in the process cultivation grew more than in the field. As a result of comparing the contents of 11 ginsenosides of 1-year and 2-year-old ginsenosides in the process cultivation and conventional cultivation ginseng, it was confirmed that the content of the process cultivation ginseng was higher than that of practice cultivation ginseng. In conclusion, conventional cultivation ginseng grows due to various factors under the natural cultivation environment, but process cultivation can secure the growth stability of ginseng by allowing stable soil and environmental control, so continuous research is needed in the future.

Increase of Membrane Potential by Ginsenosides in Prostate Cancer and Glioma cells

  • Lee, Yun-Kyung;Im, Young-Jin;Kim, Yu-Lee;Sacket Santosh J.;Lim, Sung-Mee;Kim, Kye-Ok;Kim, Hyo-Lim;Ko, Sung-Ryong;Lm, Dong-Soon
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.70-77
    • /
    • 2006
  • Ginseng has an anti-cancer effect in several cancer models. As a mechanism study of ginsenoside-induced growth inhibition in cancer cells, we measured change of membrane potential in prostate cancer and glioma cells by ginsenosides, active constituents of ginseng. Membrane potential was estimated by measuring fluorescence change of DiBAC-Ioaded cells. Among 11 ginsenosides tested, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased significantly and robustly the membrane potential in a concentration-dependent manner in prostate cancer and glioma cells. Ginsenosides Rc, Ro, and $Rb_1$ slightly increased membrane potential. The ginsenoside-induced membrane potential increase was not affected by treatment with pertussis toxin or U73122. The ginsenoside-induced membrane potential increase was not diminished in $Na^+$-free or $HCO_3^-$-free media. Furthermore, the ginsenoside-induced increase of membrane potential was not changed by EIPA (5-(N-ethyl-N-isopropyl)-amiloride), SITS (4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid), and omeprazole. In summary, ginsenosides $Rb_2$, $Rg_3$, and $Rh_2$ increased membrane potential in prostate cancer and glioma cells in a GPCR-independent and $Na^+$ independent manner.

Comparison of ginsenoside contents and antioxidant activity according to the size of ginseng sprout has produced in a plant factory (식물공장에서 생산된 새싹인삼의 크기에 따른 진세노사이드 함량 및 항산화 활성 비교)

  • Hwang, Seung Ha;Kim, Su Cheol;Seong, Jin A;Lee, Hee Yul;Cho, Du Yong;Kim, Min Ju;Jung, Jea Gack;Jeong, Eun Hye;Son, Ki-Ho;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • In this study, the ginseng sprout has produced through smart farm was classified according to its size and divided into above-ground (AG) and below-ground (BG) parts to compare ginsenoside contents and antioxidant activity. In the case of the AG part, the total phenolic contents were the highest at 5.16 mg/g in medium (M) size and the lowest at 2.23 mg/g in largest (L) size. The BG part also showed the highest content in the M size, but there was no significant difference. Also, the total flavonoid contents were also high in the M size in both the AG (5.16 mg/g) and BG (1.28 mg/g) parts. The major ginsenosides in the AG part were Re (20.33-24.15 mg/g) > Rd (11.36-27.42 mg/g) > Rg1 (4.48-5.54 mg/g) and the main ginsenosides in the BG part were Rb1 (5.09-8.61 mg/g) > Re (4.48-5.54 mg/g) > Rc (3.11-4.11 mg/g) in orders. In the case of M size, Re and Rd were approximately 4- and 19-folds higher at 24.15 mg/g and at 27.42 mg/g in the AG part and 5.20 mg/g and 1.43 mg in the BG part, respectively. In addition, F3 and Rh1 were detected in the AG part, but not in the BG part. 2,2-diphenyl-1-picrylhydrazyl (74.95%), 2,4,6-azino-bis (3-ethylbenzothiazoline-6-sulphnoic acid) diammonium salt (94.47%), and hydroxyl (70.39%) radical scavenging activities and FRAP (2.169) assay were the highest in M size than other sizes.

DK-MGAR101, an extract of adventitious roots of mountain ginseng, improves blood circulation by inhibiting endothelial cell injury, platelet aggregation, and thrombus formation

  • Seong, Hye Rim;Wang, Cuicui;Irfan, Muhammad;Kim, Young Eun;Jung, Gooyoung;Park, Sung Kyeong;Kim, Tae Myoung;Choi, Ehn-Kyoung;Rhee, Man Hee;Kim, Yun-Bae
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.683-689
    • /
    • 2022
  • Background: Since ginsenosides exert an anti-thrombotic activity, blood flow-improving effects of DK-MGAR101, an extract of mountain ginseng adventitious roots (MGAR) containing various ginsenosides, were investigated in comparison with an extract of Korean Red Ginseng (ERG). Methods: In Sprague-Dawley rats orally administered with DK-MGAR101 or ERG, oxidative carotid arterial thrombosis was induced with FeCl3 (35%), and their blood flow and occlusion time were measured. To elucidate underlying mechanisms, the cytoprotective activities on rat aortic endothelial cells (RAOECs) exposed to hydrogen peroxide (H2O2) were confirmed. In addition, the inhibitory activities of DK-MGAR101 and ERG on agonist-induced platelet aggregation, thromboxane B2 production, and ATP granule release from stimulated platelets as well as blood coagulation were analyzed. Results: DK-MGAR101 containing high concentrations of Rb1, Rg1, Rg3, Rg5, and Rk1 ginsenosides (55.07 mg/g) was more effective than ERG (ginsenosides 8.45 mg/g) in protecting RAOECs against H2O2 cytotoxicity. DK-MGAR101 was superior to ERG not only in suppressing platelet aggregation, thromboxane B2 production, and granule release, but also in delaying blood coagulation, FeCl3-induced arterial occlusion, and thrombus formation. Conclusions: The results indicate that DK-MGAR101 prevents blood vessel occlusion by suppressing platelet aggregation, thrombosis, and blood coagulation, in addition to endothelial cell injury.

Changes of nutritional constituents and antioxidant activities by the growth periods of produced ginseng sprouts in plant factory (식물공장에서 생산된 새싹인삼의 생육 시기에 따른 영양성분 및 항산화 활성 변화)

  • Seong, Jin A;Lee, Hee Yul;Kim, Su Cheol;Cho, Du Yong;Jung, Jea Gack;Kim, Min Ju;Lee, Ae Ryeon;Jeong, Jong Bin;Son, Ki-Ho;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.129-142
    • /
    • 2022
  • Ginseng sprouts, which can be eaten from leaves to roots, has the advantage of not having to use pesticides without being affected by the season by using smart farms. The optimal cultivation timing of sprout ginseng was checked and the nutritional content and antioxidant activity were compared and analyzed. The values of total fatty acids and total minerals were no significant changes during the growth periods. The contents of total amino acids were slightly decreased to 45 days and after increased to 65 days. When the growth period was 65 days, arginine had the highest content of 3309.11 mg/100 g. The total phenolic contents were high at 3.73 GAE mg/g on the 45 days, and the total flavonoid contents were also the highest at 9.04 RE mg/g on the 45 days. The contents of total ginsenoside was not noticeable for the growth periods (29.83 on 25 days→32.77 on 45 days→26.02 mg/g on 65 days). The ginsenoside Rg2 (0.62 mg/g), Re (8.69 mg/g), Rb1 (4.75 mg/g) and Rd (3.47 mg/g) had highest contents on 45 days during growth. The values of phenolic acids and flavonols were gradually increased to 45 days (338.6 and 1277.14 ㎍/g) and then decreased to 65 days. The major compounds of phenolic acids and flavonols were confirmed to benzoic acid (99.03-142.33 ㎍/g) and epigallocatechin (416.03-554.64 ㎍/g), respectively. The values of 2,2-diphenyl-1-picrylhydrazyl (44.27%), 2,4,6-azino-bis (3-ethylbenzothiazoline-6-sulphnoic acid) diammonium salt (75.16%), and hydroxyl (63.29%) radical scavenging activities and ferric reducing/antioxidant power (1.573) showed the highest activity on the 45 days as well as results of total phenolic and total flavonoid contents.

Steaming and Ultrasonic extraction conditions for enhancing the ginsenoside contents and anti-aging efficacy of the Ginseng sprout leaf/stem (새싹삼 잎 줄기의 진세노사이드 함량 및 항노화 효능 증진을 위한 증숙 및 추출조건)

  • Lee, Jong Sub;Kim, Ji Young;Han, Bok Nam;Kim, Ki-Seok;Cho, Hang-Eui;Cha, Young-Kwon;Choung, Eui Su
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.118-118
    • /
    • 2018
  • 인삼은 우리나라에서 오랜 역사동안 많은 연구가 진행되어 왔으며, 현재는 다양한 방법으로 홍삼과 흑삼으로 만들어 식품, 화장품, 의약품 등 다양한 방면으로 사용하고 있다. 본 연구에서 시중에서 구매한 새싹삼(인삼새싹) 잎/줄기에 함유된 진세노사이드(Re, Rg1, Rb1, Rg3, Rh1) 함량을 높이기 위하여 증숙과 초음파 추출조건에 관한 연구를 수행하여 우수한 항노화 소재를 개발하기 위하여 실시하였다. 실험은 새싹삼 잎/줄기를 증숙 온도와 시간의 조건에서 진세노사이드 함량이 가장 높은 조건을 선정하였으며, 선정된 조건의 새싹삼 잎/줄기에 파장과 출력에 대한 조건으로 초음파 추출을 진행하여 진세노사이드가 가장 높은 함량을 보이는 조건을 선정하였다. 그 결과 새싹삼 잎/줄기추출물(GSE; Ginseng Sprout Extract)의 진세노사이드 함량은 4.8 mg/g으로 확인되었으나 증숙공정을 통해 8.82 mg/g으로 함량이 증가되었으며, 상기 증숙된 새싹삼 잎/줄기에 초음파공정을 적용하여 추출한 새싹삼 잎/줄기초음파추출물(SU-GSE; Steaming & dry Ultrasonication-Ginseng Sprout Extract)에서는 최대 10.65 mg/g으로 함량이 증가되었다. 반면, 새싹삼 뿌리의 진세노사이드는 2.30 mg/g으로 확인되었으나 증숙공정을 통해 4.95 mg/g으로 함량이 증가되었으며, 초음파추출공정을 통해 최대 5.82 mg/g으로 함량이 증가된 것을 확인할 수 있었으나, 새싹삼 잎/줄기에 비해 진세노사이드 함량이 낮은 것을 확인하였다. 항노화 소재로의 활용가능성을 평가하기 위하여 새싹삼 잎/줄기추출물 GSE와 SU-GSE에 대한 세포생존률, 항산화 및 항노화에 대한 효능평가를 진행하였으며 GSE의 경우 $100{\mu}g/ml$에서 세포생존률이 82.4%를 보인 반면 SU-GSE에서는 $1,000{\mu}g/ml$의 농도에서 101.8%의 세포 생존률을 보였다. 항산화 활성의 경우 GSE와 SU-GSE $100{\mu}g/ml$ 농도에서 각각 52%와 81%의 항산화 활성을 나타냄으로써 SU-GES의 조건에서 항산화 활성이 우수한 것으로 확인되었다. 또한, 항노화 활성에 대한 실험결과 MMP-1 유전자 발현에 대한 억제율을 비교한 결과 GSE와 SU-GES $100{\mu}g/ml$의 농도에서 각각 18%와 29%의 억제율을 보임에 항노화 소재로의 활용가능성을 확인하였다.

  • PDF

Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach

  • Lim, Kyu Hee;Lim, Dae-Jun;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.283-292
    • /
    • 2013
  • Ginsenosides are divided into two groups based on the types of the panaxadiol group (e.g., ginsenoside-Rb1 and -Rc) and the panaxatriol group (e.g., ginsenoside-Rg1 and -Re). Among them, ginsenoside-Re (G-Re) is one of the compounds with the highest content in Panax ginseng and is responsible for pharmacological effects. However, it is not yet well reported if G-Re increases the hemodynamics functions on ischemia (30 min)/reperfusion (120 min) (I/R) induction. Therefore, in the present study, we investigated whether treatment of G-Re facilitated the recovery of hemodynamic parameters (heart rate, perfusion pressure, aortic flow, coronary flow, and cardiac output) and left ventricular developed pressure (${\pm}dp/dt_{max}$). This research is designed to study the effects of G-Re by studying electrocardiographic changes such as QRS interval, QT interval and R-R interval, and inflammatory marker such as tissue necrosis factor-${\alpha}$ (TNF-${\alpha}$) in heart tissue in I/R-induced heart. From the results, I/R induction gave a significant increase in QRS interval, QT interval and R-R interval, but showed decrease in all hemodynamic parameters. I/R induction resulted in increased TNF-${\alpha}$ level. Treatment of G-Re at 30 and $100{\mu}M$ doses before I/R induction significantly prevented the decrease in hemodynamic parameters, ameliorated the electrocardiographic abnormality, and inhibited TNF-${\alpha}$ level. In this study, G-Re at $100{\mu}M$ dose exerted more beneficial effects on cardiac function and preservation of myocardium in I/R injury than $30{\mu}M$. Collectively, these results indicate that G-Re has distinct cardioprotectective effects in I/R induced rat heart.

Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In order to distinguish the cultivation area of Panax ginseng, principal component analysis (PCA) using quantitative and qualitative data acquired from HPLC was carried out. A new HPLC method coupled with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous quantification of ten major ginsenosides, namely $Rh_1$, $Rg_2$, $Rg_3$, $Rg_1$, Rf, Re, Rd, $Rb_2$, Rc, and $Rb_1$ in the root of P. ginseng C. A. Meyer. Simultaneous separations of these ten ginsenosides were achieved on a carbohydrate analytical column. The mobile phase consisted of acetonitrile-water-isopropanol, and acetonitrile-water-isopropanol using a gradient elution. Distinct differences in qualitative and quantitative characteristics for ginsenosides were found between the ginseng roots produced in two different Korean cultivation areas, Ganghwa and Punggi. The ginsenoside profiles obtained via HPLC analysis were subjected to PCA. PCA score plots using two principal components (PCs) showed good separation for the ginseng roots cultivated in Ganghwa and Punggi. PC1 influenced the separation, capturing 43.6% of the variance, while PC2 affected differentiation, explaining 18.0% of the variance. The highest contribution components were ginsenoside $Rg_3$ for PC1 and ginsenoside Rf for PC2. Particularly, the PCA score plot for the small ginseng roots of six-year old, each of which was light than 147 g fresh weight, showed more distinct discrimination. PC1 influenced the separation between different sample sets, capturing 51.8% of the variance, while PC2 affected differentiation, also explaining 28.0% of the variance. The highest contribution component was ginsenoside Rf for PC1 and ginsenoside $Rg_2$ for PC2. In conclusion, the HPLC-ELSD method using a carbohydrate column allowed for the simultaneous quantification of ten major ginsenosides, and PCA analysis of the ginsenoside peaks shown on the HPLC chromatogram would be a very acceptable strategy for discrimination of the cultivation area of ginseng roots.

Effect of Ginseng Saponin on LDL Receptor Biosynthesis (인삼사포닌의 저밀도지질단백질(LDL)수용체에 미치는 영향)

  • Joo Chung No;Lee Hee Bong;Lee Yong Woo;Kang In Chul
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.47-54
    • /
    • 1988
  • Cholesterol a component of all eucaryotic plasma membranes. is essential for the growth and viability of cells in higher organisms. However. too much cholesterol can be lethal because of atherosclerosis resulting from the deposition of cholesterol ester plaques. It was attempted in this study to understand the preventive effect of ginseng saponin. one of the major components of the roots of Panax ginseng C.A. Meyer. against hypercholesterolemia induced by high cholesterol diet. $^{125}I-LDL$ was injected intravenously to rabbits and rats. which were fed a high cholesterol diet with and/or without ginseng saponin for 12 days. The disappearance of the radioactivity occurred faster in the test group than the control. The effect of saponin fraction from Panax ginseng C.A. Meyer and the purified ginsenosilks. $Rb_1,\;Rb_2,\;Re\;and\;Rg_1,$ on LDL receptor biosynthesis in high cholesterol fed rat has been investigated. Analysis of LDL receptors from various organs such as liver. kidney. adrenal cortex and testis showed that the population of LDL receptors of test group significantly higher than that of the control. It was also found that liver homogenate containing ginsenosides $(10^{-3}-10^{-4}\%)$ stimulated the biosynthesis of bile acid form cholesterol. From the above results. it seemed that ginsenosides lower the cholesterol level by stimulating cholesterol metabolism. which result in the suppression of the inhibitory action of cholesterol on LDL receptor biosynthesis.

  • PDF