• 제목/요약/키워드: G-Equation

검색결과 1,692건 처리시간 0.036초

KAZDAN-WARNER EQUATION ON INFINITE GRAPHS

  • Ge, Huabin;Jiang, Wenfeng
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1091-1101
    • /
    • 2018
  • We concern in this paper the graph Kazdan-Warner equation $${\Delta}f=g-he^f$$ on an infinite graph, the prototype of which comes from the smooth Kazdan-Warner equation on an open manifold. Different from the variational methods often used in the finite graph case, we use a heat flow method to study the graph Kazdan-Warner equation. We prove the existence of a solution to the graph Kazdan-Warner equation under the assumption that $h{\leq}0$ and some other integrability conditions or constrictions about the underlying infinite graphs.

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

Prediction of maximum shear modulus (Gmax) of granular soil using empirical, neural network and adaptive neuro fuzzy inference system models

  • Hajian, Alireza;Bayat, Meysam
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.291-304
    • /
    • 2022
  • Maximum shear modulus (Gmax or G0) is an important soil property useful for many engineering applications, such as the analysis of soil-structure interactions, soil stability, liquefaction evaluation, ground deformation and performance of seismic design. In the current study, bender element (BE) tests are used to evaluate the effect of the void ratio, effective confining pressure, grading characteristics (D50, Cu and Cc), anisotropic consolidation and initial fabric anisotropy produced during specimen preparation on the Gmax of sand-gravel mixtures. Based on the tests results, an empirical equation is proposed to predict Gmax in granular soils, evaluated by the experimental data. The artificial neural network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were also applied. Coefficient of determination (R2) and Root Mean Square Error (RMSE) between predicted and measured values of Gmax were calculated for the empirical equation, ANN and ANFIS. The results indicate that all methods accuracy is high; however, ANFIS achieves the highest accuracy amongst the presented methods.

A Generalization of the Hyers-Ulam-Rassias Stability of the Pexiderized Quadratic Equations, II

  • Jun, Kil-Woung;Lee, Yang-Hi
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.91-103
    • /
    • 2007
  • In this paper we prove the Hyers-Ulam-Rassias stability by considering the cases that the approximate remainder ${\varphi}$ is defined by $f(x{\ast}y)+f(x{\ast}y^{-1})-2g(x)-2g(y)={\varphi}(x,y)$, $f(x{\ast}y)+g(x{\ast}y^{-1})-2h(x)-2k(y)={\varphi}(x,y)$, where (G, *) is a group, X is a real or complex Hausdorff topological vector space and f, g, h, k are functions from G into X.

  • PDF

CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY G-BROWNIAN MOTION

  • Cunxia Liu;Wen Lu
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.917-932
    • /
    • 2024
  • In this paper, we deal with the Euler-Maruyama (EM) scheme for stochastic differential equations driven by G-Brownian motion (G-SDEs). Under the linear growth and the local Lipschitz conditions, the strong convergence as well as the rate of convergence of the EM numerical solution to the exact solution for G-SDEs are established.

EXPONENTIAL DECAY FOR THE SOLUTION OF THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • 제34권1호
    • /
    • pp.69-84
    • /
    • 2018
  • In this paper, we study the viscoelastic Kirchhoff type equation with a nonlinear source for each independent kernels h and g with respect to Volterra terms. Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the uniform decay rate of the Kirchhoff type energy.

A PARAMETRIC SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.45-57
    • /
    • 2001
  • A parametric scheme is proposed for the numerical solution of the nonlinear Boussinesq equation. The numerical method is developed by approximating the time and the space partical derivatives by finite-difference re placements and the nonlinear term by an appropriate linearized scheme. The resulting finite-difference method is analyzed for local truncation error and stability. The results of a number of numerical experiments are given for both the single and the double-soliton wave. AMS Mathematics Subject Classification : 65J15, 47H17, 49D15.

ON THE STABILITY OF A CAUCHY-JENSEN FUNCTIONAL EQUATION III

  • Jun, Kil-Woung;Lee, Yang-Hi;Son, Ji-Ae
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.205-214
    • /
    • 2008
  • In this paper, we prove the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation $2f(x+y,\frac{z+w}{2})=f(x,z)+f(x,w)+f(y,z)+f(y,w)$ in the spirit of $P.G{\breve{a}}vruta$.

  • PDF

A PREDICTOR-CORRECTOR SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Ismail, M.S.;Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.11-27
    • /
    • 2003
  • A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-linear system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.