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KAZDAN-WARNER EQUATION ON INFINITE GRAPHS

Huabin Ge and Wenfeng Jiang

Abstract. We concern in this paper the graph Kazdan-Warner equation

∆f = g − hef

on an infinite graph, the prototype of which comes from the smooth
Kazdan-Warner equation on an open manifold. Different from the vari-

ational methods often used in the finite graph case, we use a heat flow

method to study the graph Kazdan-Warner equation. We prove the ex-
istence of a solution to the graph Kazdan-Warner equation under the

assumption that h ≤ 0 and some other integrability conditions or con-

strictions about the underlying infinite graphs.

1. Introduction

The smooth Kazdan-Warner equation gives a description of the conformal
deformation of a smooth metric g on a 2-dimensional closed Riemannian man-
ifold (M, g). Let g̃ = e2fg be a conformal deformation of the smooth metric

g. To find a smooth function K̃ as the Gaussian curvature of g̃, one needs to
solve the nonlinear elliptic equation

∆gf = K − K̃e2f .
By a parameter transformation of f to u, the above equation takes the following
form

(1.1) ∆gu = c− heu,
where c is a constant, and h is some prescribed function, with neither c nor
h depending on the geometry of (M, g). In the fundamental and pioneering
work of Kazdan and Warner [13], they discussed the equation (1.1) and gave
almost completely characterizations to the solvability of (1.1). In case c < 0,
they proved that there is a threshold ch < 0 such that the above equation has a
solution if c ∈ (ch, 0), while it has no solution if c < ch. However, the existence
of a solution also in the critical case where c = ch was proved by Chen and Li
[7]. Kazdan and Warner [14] also discussed the solvability of (1.1) on certain
non-compact two dimensional manifolds.
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The literature on the Kazdan-Warner equation is huge. However, in a very
recent paper [12], Grigor’yan, Lin and Yang have studied this equation on a
finite graph. In particular, in the regime where c < 0, their result is essentially
the same as in the manifold case of Kazdan and Warner. And also there is
a solution in the critical case where c = ch, which was proved by the first
author of this paper Ge [10]. Following Grigor’yan, Lin and Yang’s idea, Ge
[11] studied the p-th Kazdan-Warner equation ∆pu = c−heu on a finite graph.

Inspired by these works, we concern in this paper the Kazdan-Warner equa-
tion

(1.2) ∆f = g − hef

on an infinite graph, the prototype of which comes from the smooth Kazdan-
Warner equation on an open manifold. The problem in the finite graph case
is somewhat simplified by the fact that function spaces are finite dimensional.
Different from the variational methods often used in the finite graph case, we
use a heat flow method (see Wang-Zhang [19]) to study the Kazdan-Warner
equation. We prove the existence of a solution to the Kazdan-Warner equation
(1.2) on an infinite graph under the assumption that h ≤ 0 and some other
integrability conditions or constrictions about the underlying infinite graphs.

The paper is organized as follows. In Section 2, we state the basic settings
and main theorems. In Section 3, we prove our main theorem, i.e., Theorem
2.4 in three steps.

2. Settings and main results

Let G = (V,E) be a graph, where V denotes the vertex set and E denotes the
edge set. The graph G is called connected, if one can not find a subset V1 ⊂ V ,
such that there are no edges between V1 and V c

1 . A vertex measure µ is a map
µ : V → (0,∞). An edge measure w is a symmetric map w : E → (0,∞)
on G, where symmetric means, wxy = wyx for each edge x ∼ y. We call G
locally finite, if at each vertex x, the set {y | y ∼ x} is finite. Throughout this
paper, we denote C(G, f, . . .) as some positive constant depending only on the
information of G, f, . . .. Note that the information of G contains V,E, µ and
w. In the following, we always assume that G is connected, infinite and locally
finite.

For a function f : V → R, the graph Laplacian (with respect to µ,w) is
defined by

∆f(x) =
1

µ(x)

∑
y∼x

wxy

(
f(y)− f(x)

)
.

The integral of f over V (with respect to the vertex measure µ) is defined by∫
V

fdµ =
∑
x∈V

f(x)µ(x).
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Note f may not be integrable generally. Denote Lp(V ) as the space of all p-th
integrable functions on V (with respect to the vertex measure µ). The absolute
value of the gradient of f is defined by

|∇f |(x) =

(
1

2µ(x)

∑
y∼x

wxy

(
f(x)− f(y)

)2)1/2

.

If |∇f | ∈ L2(V ), then a direct calculation gives the following Green formula∫
V

|∇f |2dµ = −
∫
V

f∆fdµ.

Now we consider the Kazdan-Warner equation on the graph G

(2.1) ∆f + hef − g = 0,

where g and h are known functions on V . We say f : V → R is a global solution
of (2.1), if ∆f(x) + h(x)ef(x) − g(x) = 0 at each vertex x ∈ V .

Definition 2.1 (full subgraph). A full subgraph G′ ⊂ G is a subgraph of
G, such that (1) for a pair of vertices x, y in G′, x ∼ y in G′ if and only if
x ∼ y in G, and (2) the vertex measure and edge measure in G′ are exactly the
restriction of µ and w for G.

Definition 2.2 (exhaustion of a graph). An exhaustion {Gk} of the graph G
is a sequence of finite full subgraphs G1, G2, . . ., with vertex sets V1 ⊂ V2 ⊂ · · ·
so that V =

⋃
k Vk.

For each Gk in an exhaustion of G, we set Vk = Vk ∪ {x |x ∈ G, x ∼ y for
some y ∈ Gk}, and denote by Gk as its corresponding full subgraph. Moreover,
we set ∂Vk = Vk \ Vk.

Definition 2.3 (Cheeger graph). We say a graph G with a vertex measure µ
and an edge measure w is a Cheeger graph, if there exists an exhaustion {Gk}
of G, such that for each k and for each function f : Vk → R with f |∂Vk

≡ 0,
the following Cheeger inequality holds

(2.2) ‖∇f‖L2(Vk)
> C(G)‖f‖L2(Vk)

,

where C(G) is a constant depending only on the information of G and measure
µ,w.

The inequality (2.2) is the graph theory version of Cheeger’s inequality [6]
of eigenvalues of graph Laplacians. As is known, the curvature-dimension type
inequality CD(m,K) often implies a lower bound of the nonzero eigenvalues
of graph Laplacians, see [3] for example. In addition, the curvature-dimension
type inequality, the eigenvalue estimations, the isoperimetric constants, the
Sobolev constants and the Cheeger-type inequalities are closely related to each
other. They all reveal some geometric information of a manifold (or a graph).
By now, there is a vital interest in the study of these objects on finite or infinite
graphs. See [1, 2, 4, 5, 8, 9, 15,17] for more related works.
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Generally, the Kazdan-Warner equation may not have a global solution if
no conditions are imposed on g, h and G. We pose two sufficient conditions
in the paper, each of which guarantees the existence of a global solution of the
Kazdan-Warner equation (2.1).

(C-1) h ∈ L1(V ), g ≤ h < 0, and
∫
V

(
g
h

)2 |h|dµ < +∞.
(C-2) G is Cheeger, g ∈ L2(V ), h ∈ L1(V ) and h ≤ 0.

Theorem 2.4. The Kazdan-Warner equation (2.1) has a global solution on G
under either condition (C-1) or (C-2).

Corollary 2.5. Then Poisson equation ∆f = g with g ∈ L2(V ) has a global
solution on a Cheeger graph G.

In case g is a constant c, the Kazdan-Warner equation (2.1) changes to

(2.3) ∆f = c− hef .
Obviously, Theorem 2.4 implies the following three corollaries.

Corollary 2.6. Assume c ≤ h < 0, and h, h−1 ∈ L1(V ). Then the equation
(2.3) has a global solution on G.

Corollary 2.7. Assume G has finite volume, i.e.,
∫
V
dµ < +∞. Then (2.3)

has a global solution if c ≤ h ≤ −ε, where ε is a positive constant.

Remark 1. It appears that all existing results about the solvability of some
nonlinear equations on G need “µ-noncollapsing”, i.e., there is a positive con-
stant δ so that µ(x) ≥ δ for each x ∈ V . Corollary 2.7 seems the first one
dealing with “µ-collapsing” case.

Corollary 2.8. Assume G is a Cheeger graph. Then the following equation

(2.4) ∆f = −hef

has a global solution on G if h ∈ L1(V ) and h ≤ 0.

Remark 2. Geometrically, c = 0 means the underlying manifold is everywhere
flat. Hence in the smooth case, the equation (2.4) is in fact the smooth Kadan-
Warner equation on R2. In this sense, Corollary 2.8 deals with the solvability
of the graph Kazdan-Warner equation on a Cheeger graph drawing on R2.
Note on R2, Sattinger [18] proved that (2.4) has no solution if h(x) ≤ − C

‖x‖2

at infinity, while Ni [16] proved that (2.4) possesses infinitely many solutions
if 0 ≥ h(x) ≥ − C

‖x‖l at infinity for some l > 2. Hence our assumption that

h ∈ L1(V ) seems sharp for the existence of a solution to (2.4) on a planar
graph.

3. Proof of Theorem 2.4

In this section, we prove the existence of a global solution for the Kazdan-
Warner equation under either condition (C-1) or condition (C-2). The proof is
divided into three steps.
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In Step 1, we transform the Kazdan-Warner equation (2.1) to an associated
equation on Gk for each k, where {Gk} is an exhaustion of G.

In Step 2, we show that for each k, the associated equation has a solution
fk on Gk.

In Step 3, we show {fk(x)}k≥1 is bounded for each fixed x ∈ V under (C-1)
or (C-2). By choosing a subsequence of fk, we get a solution to the Kazdan-
Warner equation (2.1).

Step 1. Let {Gk}k≥1 be an exhaustion of G. When considering the con-
dition (C-2) case, we require that {Gk}k≥1 satisfies Cheeger’ inequality (2.2).
For fixed k, consider the following equation

∆f(x)− g(x) + h(x)ef(x) = 0 for x ∈ Gk,

f(x) = 0 for x /∈ Gk.(3.1)

Denote ∆k as the discrete Laplacian on Gk = (Vk, Ek), that is for each
x ∈ Vk

∆kf(x) =
1

µ(x)

∑
y∼x, y∈Gk

wxy

(
f(y)− f(x)

)
.

For each x ∈ Vk we have

∆f(x) = ∆kf(x)− ϕk(x)f(x),

where

ϕk(x) =
1

µ(x)

∑
y∼x, y/∈Gk

wxy.

Clearly ϕk ≥ 0. We rewrite the equation (3.1) on Gk as

(3.2) ∆kf − ϕkf + hef − g = 0, on Gk,

and call it the associated Kazdan-Warner equation on Gk.
Let f(t, x) : R × Vk → R be a function defined on Vk at each time t, and

varying with respect to t smoothly. Consider the following heat equation

(3.3)

(
∂

∂t
−∆k

)
f = hef − g − ϕkf.

Lemma 3.1. Given a function f0 : Vk → R. Assume h ≤ 0. Then for each
k, we have a unique solution on [0,∞)× Vk for the heat equation (3.3) on Gk

with an initial condition f(0, ·) = f0.

Proof. Write ft = ∂tf and ftt = ∂t∂tf . Then the heat equation (3.3) can be
written as an ODE system ft = F (t, f) with F (t, f) = ∆kf + hef − g − ϕkf .
Since all the coefficients in F (t, f) (as a function of f) are smooth and hence
locally Lipschitz continuous. By the Picard theorem in classical ODE theory,
the heat equation (3.3) on Gk with an initial condition f(0, ·) = f0 has a unique
solution on a small time interval [0, ε). By the extension theorem in classical
ODE theory, there is a 0 < T ≤ +∞, such that the heat equation (3.3) has
a solution f on a right maximal time interval [0, T ). If T 6= +∞, then ft(t, ·)
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“blows up” when t goes to T , i.e., ft can’t be uniformly bounded for t ∈ [0, T )
and x ∈ Vk. We next show this will not happen. By direct calculation, we
obtain (

∆k −
∂

∂t

)(
ft
)2

= 2ft∆kft + 2|∇ft|2 − 2fttft

≥ 2ft
∂

∂t

(
∆kf − ft

)
= 2
(
ft
)2(− hef + ϕk

)
.

Note h ≤ 0 and ϕk ≥ 0, then(
∆k −

∂

∂t

)(
ft
)2 ≥ 0.

By the maximum principle of parabolic equations, we obtain

max
0≤t<T, x∈Vk

|ft(t, x)|2 = max
x∈Vk

|ft(0, x)|2

= max
x∈Vk

|∆kf0 + hef0 − g − ϕkf0|

= C(G, h, g, f0).(3.4)

Hence ft(t, x) is uniformly bounded for t ∈ [0, T ) and x ∈ Vk. This means
T = +∞, which implies the conclusion. �

Step 2. Assume h ∈ L1(V ) and h ≤ 0. Then we have:

Lemma 3.2. The associated Kazdan-Warner equation (3.2) has a solution fk

on Vk (if h is not identically zero, we require k is large enough so that Vk
contains a vertex x0 with h(x0) 6= 0). Moreover, fk satisfies

(3.5)

∫
Vk

(
fkg +

1

2

(
|∇fk|2 + ϕkf

2
)
−
(
ef

k

− 1
)
h

)
dµ ≤ 0.

Proof. Consider the heat equation (3.3) onGk with an initial condition f(0, ·) =
0. It has a unique solution f by Lemma 3.1. We show that f is uniformly
bounded on [0,+∞)× Vk. Consider the functional

Jk(f) =

∫
Vk

(
fg +

1

2
|∇f |2 − (ef − 1)h+

1

2
ϕkf

2

)
dµ.

Then by direct calculation, we get

d

dt

(
Jk(f)

)
=

∫
Vk

(
ftg −∆kfft − hefft + ftfϕk

)
dµ

= −
∫
Vk

(ft)
2dµ ≤ 0.(3.6)

Hence Jk
(
f(t, ·)

)
is descending and

(3.7)

∫
Vk

(
fg +

1

2

(
|∇f |2 + ϕkf

2
)
− (ef − 1)h

)
dµ ≤ Jk

(
f(0, ·)

)
= 0.
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We argue in the following of this step according to h = 0 or h 6= 0 on Vk.
(1) If h = 0 on Vk. Extend f(t, x) to Vk by setting f(·, x) = 0 at all vertex

x ∈ ∂Vk, so∫
Vk

|∇f |2dµ =
∑
x∼y

wxy (f(t, x)− f(t, y))
2

=
∑

x,y∈Vk,x∼y

wxy

(
f(t, x)− f(t, y)

)2
+ 2

∑
x∈Vk,y∈∂Vk,x∼y

wxyf
2(t, x)

=

∫
Vk

(
|∇f |2 + 2ϕkf

2
)
dµ ≤ −2

∫
Vk

fgdµ.(3.8)

Note at the beginning of Step 1, we have made the assumption that the ex-
haustion {Gk} satisfies Cheeger’ inequality (2.2) when considering the condition
(C-2) case, hence∫

Vk

|f |2dµ =

∫
Vk

|f |2dµ ≤ C(G)

∫
Vk

|∇f |2dµ

≤ −4C(G)

∫
Vk

fgdµ

≤ 4C(G)‖g‖L2(Vk)

(∫
Vk

|f |2dµ
)1/2

.

It follows that there is a constant C(G, g, Vk), such that for each t ∈ R,∫
Vk

|f(t, x)|2dµ ≤ C(G, g, Vk).

This implies that f(t, x) is uniformly bounded on [0,+∞)× Vk.
(2) If h 6= 0 on Vk. We approach by contradiction. If f is not bounded on

[0,+∞)× Vk, then there is a time sequence ti → +∞ such that

li = max
Gk

|f(ti, ·)| → +∞.

Set ui = f(ti,·)
li

, then by (3.7), we obtain∫
Vk

(
fg +

1

2
|∇f |2

)
dµ ≤

∫
Gk

(ef − 1)hdµ

≤
∫
Gk

(−h)dµ ≤
∫
G

(−h)dµ = ‖h‖L1(V ).

In particular, ∫
Vk

(
guili +

1

2
|∇ui|2l2i

)
dµ ≤ ‖h‖L1(V ).

Since li → +∞, then by dividing l2i on both sides at the same time, we get∫
Vk

|∇ui|2dµ→ 0.
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This implies that ui converges to some constant C∗ (= 1 or −1). When k is
large enough, we can find h(x0) < 0 at some x0 in Vk (otherwise h will be
identically zero on Vk). In case C∗ = 1, we have euili > 1 when i is large
enough, hence∫

Vk

(−h)
(
ef − 1

)
dµ =

∫
Vk

(−h)
(
euili − 1

)
dµ

≥ −h(x0)
(
euili − 1

)
>

∫
Vk

−guilidµ =

∫
Vk

−gfdµ,

where the last inequality uses the fact that, for any constant a, ex − 1 > ax if
x is big enough. This leads to a contradiction to (3.7). In case C∗ = −1, note
we have proved

|∆kf + hef − g − ϕkf | ≤ C(G, h, g)

in the proof of Lemma 3.1, see (3.4). Substitute f(ti, ·) = uili into the above
inequality, and divide li at both sides at the same time, we get

∆kui +
heuili

li
− g

li
− ϕkui → 0

at each vertex of Vk. However, by direct calculation

∆kui +
heuili

li
− g

li
− ϕkui → −ϕk.

So ϕk = 0, this contradicts the fact that G is connected. Thus we finally prove
that f is bounded on [0,+∞)×Vk. By (3.6), the expression of J ′k(t), we derive
that there is a sequence of times {tn} going to +∞, such that ft(tn, x) → 0
at each vertex x ∈ Vk. Further note f(tn, ·) has a converging subsequence,
which converges to some function fk(x), x ∈ Vk. Obviously, fk is a solution
to the associated Kazdan-Warner equation (3.2). Moreover, (3.5) comes from
(3.7). �

Step 3. If we can prove that {fk(x)}k≥1 is bounded at each vertex x ∈ V ,
we get a global solution of the Kazdan-Warner equation (2.1) by choosing a
subsequence of fk. The reason is as follows. Note fk(x) = 0 if x is not in Vk,
then by choosing a subsequence we can get a function f : V → R such that
fk(x)→ f(x) at each fixed x ∈ V . For every fixed vertex x ∈ V we have

∆kf
k(x) + h(x)ef

k(x) − g(x)− ϕk(x)fk(x) = 0.

If k is large enough, then ∆kf
k(x) = ∆fk(x) and ϕk(x) = 0. Let k → +∞, we

get

∆f(x) + h(x)ef(x) − g(x) = 0,

which implies that f is a global solution of the Kazdan-Warner equation (2.1).
So our main task in this step is to prove that {fk(x)}k≥1 is bounded when
either condition (C-1) or condition (C-2) is satisfied.
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Assume the condition (C-1) is satisfied. We first prove fk ≥ 0 on Vk. If this
is not true, we may choose a vertex x ∈ Vk such that fk(x) < 0 is the minimum
value of fk on Vk. At the vertex x, we have

∆kf
k(x) = g(x)− h(x)ef(x) + ϕk(x)fk(x)

< g(x)− h(x) ≤ 0.

However, ∆kf
k(x) ≥ 0 since fk(x) is a minimum value. This leads to a con-

tradiction. Hence fk ≥ 0 on Vk.
Denote ψ = g

h . By (3.5) and the fact ex − 1 > 1
2x

2 when x > 0, we have∫
Vk

1

2

(
fk
)2|h|dµ < ∫

Vk

(
ef

k

− 1
)
|h|dµ

≤
∫
Vk

fk|g|dµ

≤
(∫

Vk

(
fk
)2|h|dµ)1/2(∫

Vk

ψ2|h|dµ
)1/2

.

Then it follows for each k∫
Vk

(
fk
)2
dµ ≤ 4

∫
Vk

|h|ψ2dµ ≤ 4

∫
V

|h|ψ2dµ.

This implies that {fk(x)}k≥1 is bounded at each fixed vertex x ∈ V .

Assume the condition (C-2) is satisfied. Extend fk to Vk by setting fk = 0
on ∂Vk. Similar to (3.8), we have

(3.9)

∫
Vk

|∇fk|2dµ =

∫
Vk

(
|∇fk|2 + 2ϕk

(
fk
)2)

dµ.

Note h ≤ 0, hence ef
k

h ≤ 0 = h + |h| and then
(
ef

k − 1
)
h ≤ |h|. Using this

elementary inequality and (3.5), we get∫
Vk

(
fkg +

1

2
|∇fk|2 + ϕk

(
fk
)2)

dµ ≤
∫
Vk

(
ef

k

− 1
)
hdµ

≤
∫
Vk

|h|dµ ≤ ‖h‖L1(V ).(3.10)

Combining the above inequality (3.10) with the equality (3.9), we get∫
Vk

|∇fk|2dµ ≤ 2‖h‖L1(V ) + 2

∫
Vk

|fkg|dµ.

Since G is a Cheeger graph, by Cheeger inequality (2.2) and g ∈ L2(V ), we
obtain∫

Vk

|fk|2dµ ≤ C(G)

(
‖h‖L1(V ) +

∫
Vk

|fkg|dµ
)

≤ C(G)‖h‖L1(V ) + C(G)

(∫
Vk

|fk|2dµ
)1/2(∫

Vk

g2dµ

)1/2
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≤ C(G, h) + C(G)‖g‖L2(V )

(∫
Vk

|fk|2dµ
)1/2

.

Therefore,∫
Vk

|fk|2dµ =

∫
Vk

|fk|2dµ ≤ C(G, h) + C(G, g)

(∫
Vk

|fk|2dµ
)1/2

.

It follows that there is a constant C(G, g, h), such that for each k,∫
Vk

|fk|2dµ ≤ C(G, g, h).

This implies that {fk(x)}k≥1 is bounded at each fixed vertex x ∈ V . We finish
the proof.
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