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EXPONENTIAL DECAY FOR THE SOLUTION OF THE

VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH

MEMORY CONDITION AT THE BOUNDARY

Daewook Kim

Abstract. In this paper, we study the viscoelastic Kirchhoff type equation

with a nonlinear source for each independent kernels h and g with respect
to Volterra terms. Under the smallness condition with respect to Kirchhoff

coefficient and the relaxation function and other assumptions, we prove the

uniform decay rate of the Kirchhoff type energy.

1. Introduction

In the present work, we are concerned with the following problem:

utt(x, t)−M(x, t, ‖∇u(t)‖2)∆u(x, t) (1)

+

∫ t

0

h(t− τ)div[a(x)∇u(τ)]dτ + |u|γu = 0 in Ω× (0, T ),

u(x, t) = 0 on Γ0 × (0, T ), (2)

u(x, t) +

∫ t

0

g(t− τ)M(x, τ, ‖∇u(τ)‖2)
∂u

∂ν
(τ)dτ = 0 on Γ1 × (0, T ),(3)

[a(x)∇u(τ)] · ν = 0 on Γ2 × (0, t), (4)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (5)

where Ω be a bounded open set of RN (N ≥ 1) with a smooth boundary Γ of
class C2, γ > 0, and other conditions such as M,h, a be in next section. Indeed,
t < T in (4). We consider Γ0,Γ1,Γ2 having positive Lebesque measures and
Γ0 ∩ Γ1 ∩ Γ2 = φ. Let ν be the outward normal to Γ and T > 0 be a real
number. In fact, u0, u1 are initially given functions and u(x, t) is the transversal
displacement of the strip at spatial coordinate x and time t in the real world
application.

Our system works independently with respect to kernels for Volterra terms
and spatial part for the Kirchhoff term under internal space or not. Physically,
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first, in the space Ω, the Volterra energy is only acted on h. Second, in the space
Γ0, There is no Volterra energy. Third, the Volterra energy is only acted on g
in the space Γ1 And also, the main system has a difference when it comes to the
Kirchhoff type term under internal space or not in this work. More precisely, the
Kirchhoff type term is not affected only by spatial part on the boundaries That
is, not only M(x, t, ‖∇u(t)‖2) = 0 on the space Γ0 but also M(x, t, ‖∇u(t)‖2) =
M(t, ‖∇u(t)‖2) on the space Γ1 in this work. So we let you know the follows
again:

M(x, t, ‖∇u(t)‖2) := M(t, ‖∇u(t)‖2) on Γ1. (6)

This problem has its origin in the mathematical description of system in real
world from the mathematical modeling for axially moving viscoelastic materi-
als. It is well known that viscoelastic materials exhibit natural damping, which
is due to the special property of these materials to retain a memory of their
past history. From the mathematical point of view, these damping effects are
modeled by integro-differential operators. For these reasons, there are not exist
weak or strong damping term in our problem (1)-(5). Recently, problems with
Timoshenko or basic hyperbolic type for viscoelastic materials have been consid-
ered by many authors (See [1, 2]). Besides, many engineering devices involve the
transverse vibration of axially moving strings. Axially moving string is a typical
model that is widely used, especially when the subject is long and narrow enough
and has a negligible flexural rigidity, to represent threads, wires, magnetic tapes,
belts, band saws, and cables. Various mathematical models and simulations have
been established for a better understanding with linear or nonlinear dynamic be-
havior of these moving continua [3, 4, 5, 6, 7, 8, 9]. The mathematical model
for axially moving strings was first introduced by Kirchhoff [10] (and see Carrier
[3]), and the original equation is given in the form of

ρh
∂2u

∂t2
=
(
p0 +

Eh

2L

∫ L

0

(∂u
∂x

)2

dx
)∂2u

∂x2

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space
coordinate x and time t; E, the young’s modulus; ρ, the mass density; h, the
cross section area; L, the length; and p0, the initial axial tension. Recently,
problems with the extended Kirchhoff type equation which is concerning axially
moving heterogeneous or non heterogeneous materials (nonlinear vibrations of
beams, strings, plates, and membranes) have been considered by many authors
(See [11, 12, 13, 14]).

In this paper, we will mainly concern on an aspect of decay rate of the Kirch-
hoff type energy of the system. Our purpose is focused on not only main equation
but also boundary condition which are involved in memory effects for the problem
otherwise the previous result [15, 16, 17]. We get its proof by using the small-
ness condition functions with respect to Kirchhoff coefficient and the relaxation
function. In fact, the difference of the energy consist in Kirchhoff type potential
energy.
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This paper organized as follows. In Section 2, we will present some notations,
material needed (assumptions, lemmas and so on) for our work and state a global
existence and energy decay rate theorem (main result). Section 3 contains the
proof of our main result.

2. Preliminaries and main results

We first introduce the elementary bracket pairing in Ω ⊂ RN

〈ϕ,ψ〉 ≡
∫

Ω

(ϕ,ψ)dx,

provided that (ϕ,ψ) ∈ L1(Ω). And we set the norms as follows.

‖u‖Lp(Ω) =

(∫
Ω

|u|pdx
) 1

p

.

To simplify the notations, we denote ‖u‖L2(Ω), ‖u‖L1(0,+∞), ‖v‖L∞(0,+∞) by
‖u‖, ‖v‖L1 , ‖v‖L∞ respectively.

In the sequel we state the general hypotheses.

(A1) h : R+ → R+ is a bounded C1 function satisfying h(0) > 0, and there
exists positive constant t0, ζ1, ζ2, ζ3 such that

−ζ1 ≤ h′(t) ≤ −ζ2h(t), ∀t > t0,

0 ≤ h′′(t) ≤ ζ3h(t), ∀t > t0.

(A2) a : Ω → R+ is a nonnegative bounded function and a(x) ≥ a0 > 0 on Ω
with

m0

a0
≥ 1− ‖a‖∞

∫ ∞
0

h(s)ds = l > 0,

where m0 is in (B2). And also, the following smallness condition satisfy

ε7 < a2
0

∫ t

0

h(s)ds.

(A3) γ satisfies

0 ≤ γ ≤ 2

n− 2
, n ≥ 3,

γ ≥ 0, n = 1, 2.

(B1) M(x, t, λ) is a real-valued function of class C2 on x ∈ Ω, t ≥ 0, λ ≤ 0.
(B2) 0 < m0 ≤ M(x, t, λ) ≤ C0f(λ) with M(x, t, λ) = M1(x, t) + M2(x, t, λ).

And also, the following smallness condition satisfy

f(λ) <

√
a0h(t)

2 − CpC̃1 + ε2
(
m0 − 1

2

)
ε3ε8

.

(B3) ∂M1

∂t ≤ 0,
∣∣∂M2

∂t

∣∣ ≤ C1g1(λ),
∣∣∂M
∂λ

∣∣ ≤ C2g2(λ), 0 < m1 ≤Mx(x, t, λ).

(B4) f, g1, g2 ∈ C1([0,+∞);R+) are strictly increasing.
Furthermore, Ci (i = 0, 1, 2) is a positive constant.
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Next, we assume that the kernel g is positive and k satisfies:

0 < k(t) ≤ b0e−s0t,
−b1k(t) ≤ k′(t) ≤ −b2k(t), (7)

−b3k′(t) ≤ k′′(t) ≤ −b4k′(t)
for some positive constants bi, i = 0, 1, 2, 3, 4 and s0. To facilitate our analysis,
we introduce the following binary operators:

(g�u)(t) =

∫ t

0

g(t− τ)|u(t)− u(τ)|2dτ,

(g ∗ u)(t) =

∫ t

0

g(t− τ)u(τ)dτ

where ∗ is the convolution product. Differentiating (3) we arrive at the Volterra
equation:

M(t, ‖∇u(t)‖2)
∂u

∂ν
+

1

g(0)
g′ ∗M(t, ‖∇u(t)‖2)

∂u

∂ν
= − 1

g(0)
ut.

Using the Volterra inverse operator, we get

M(t, ‖∇u(t)‖2)
∂u

∂ν
= − 1

g(0)
ut + k ∗ ut

where the resolvent kernel satisfy

k +
1

g(0)
g′ ∗ k = − 1

g(0)
g′.

With ς = 1
g(0) and using the above identity, we obtain

M(t, ‖∇u(t)‖2)
∂u

∂ν
= −ς{ut + k(0)u− k(t)u0 + k′ ∗ u}. (8)

In the following, we give a lemma which will be useful in this paper.

Lemma 2.1. For g,Ψ ∈ C1([0,∞) : R). Then we have

(g ∗ ψ)Ψt = −1

2
g(t)|ψ(t)|2 +

1

2
g′�ψ − 1

2

d

dt

[
g�ψ −

(∫ t

0

g(s)ds

)
|ψ|2

]
(9)

Proof. The proof of this lemma follows by differentiating the term g�ψ. �

Lemma 2.2. Denote (h � u)(t) =
∫ t

0
h(t− τ)‖

√
a(x)(u(t)− u(τ))‖2dτ . Then we

have ∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ =− 1

2

d

dt
[(h � u)(t)] +

1

2
(h′ � u)(t)

+
1

2

d

dt

[
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds

]
− 1

2
h(t)‖

√
a(x)∇u(t)‖2.

(10)



EXPONENTIAL DECAY FOR THE KIRCHHOFF TYPE EQUATION 73

Proof. A direct computation shows that∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ =

∫ t

0

h(t− τ)〈a(x)∇u(τ)− a(x)∇u(t),∇u′(t)〉dτ

+

∫ t

0

h(t− τ)〈a(x)∇u(t),∇u′(t)〉dτ

=− 1

2

∫ t

0

h(t− τ)

[
d

dt
‖
√
a(x)(∇u(τ)−∇u(t))‖2

]
dτ

+
1

2

∫ t

0

h(t− τ)

[
d

dt
‖
√
a(x)∇u(t)‖2

]
dτ

=− 1

2

d

dt

[∫ t

0

h(t− τ)‖
√
a(x)(∇u(τ)−∇u(t))‖2dτ

]
+

1

2

∫ t

0

h′(t− τ)‖
√
a(x)(∇u(τ)−∇u(t))‖2dτ

+
1

2

d

dt

∫ t

0

h(t− τ)‖
√
a(x)∇u(t)‖2dτ

− 1

2
h(t)‖

√
a(x)∇u(t)‖2.

�

Lemma 2.3. (General Poincaré Inequality).
Denote H1

Γ0
(Ω) = {u|u ∈ H1(Ω), u|Γ0

= 0} and meas(Γ0) > 0. Then there exists

a positive constant B such that ‖u‖L2(Γ) ≤ B‖∇u‖L2(Ω), for all u ∈ H1
Γ0

(Ω).

Proof. The proof can be found in [18]. �

Then, we can state our result as follows.

Theorem 2.4. Let the assumptions (A1), (A3) and (B1)-(B4) and the relating
conditions (7) and (8) to the volterra term on boundary hold and the sobolev
space V is {u | u ∈ H1

0 (Ω), u = 0 on Γ0}. If (u0, u1) ∈ (H2(Ω) ∩ V )× V and
satisfy the compatibility condition

M(0, ‖∇u0‖2)
∂u0

∂ν
= −ςu1 on Γ1. (11)

Then there exists a unique solution u of the problem (1)-(5) satisfying

u ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)), u′ ∈ L∞(0, T ;H1

0 (Ω)), u′′ ∈ L∞(0, T ;L2(Ω)),

and

u(x, t)→ u0(x) in V ∩H2(Ω); u′(x, t)→ u1(x) in V,

as t→ 0

Proof. By using Galerkin’s approximation and a routine procedure similar to that
of cite [12, 1], we can the global existence result for the solution subject to (1)-(5)
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under the assumptions (A1)-(A3) and (B1)-(B4) and the relating conditions (7)
and (8) to the volterra term on boundary. �

Theorem 2.5. Let u be the global solution of the problem (1)-(5) with the above
all conditions. We define the Kirchhoff type energy functional E(t) as

E(t) = 1
2

∫
Ω
|u′(t)|2dx+ 1

2

∫
Ω
M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

+ 1
γ+2‖u

′(t)‖γ+2
γ+2 + ς

2 (M(t, ‖∇u(t)‖2)
∫

Γ1
|u(x, t)|2dΓ1

−
∫

Γ1
M ′(t, ‖∇u(t)‖2)�u(t)dΓ1).

Then the energy functional decays exponentially to zero as the time goes to in-
finity, that is,

E(t) ≤ κe−ϑt, ∀t ≥ 0

where κ, ϑ are positive constants.

3. Proof of Theorem 2.5 (Energy decay)

Proof. Multiplying u′ on both sides of Eq.(1), integrating the resulting equations
over Ω, and using the Green formula, (6) and (3), we have

〈u′′(t), u′(t)〉+ 〈M(x, t, ‖∇u(t)‖2)∇u(t),∇u′(t)〉
+ 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

+

〈
M(t, ‖∇u(t)‖2)

∂u

∂ν
(t), u′(t)

〉
Γ1

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ + 〈|u|γu, u′〉 = 0,

(12)

that is
d

dt
E(t) =

1

2

∫
Ω

∂

∂t
M1(x, t)|∇u(x, t)|2dx

+
1

2

∫
Ω

∂

∂t
M2(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

+

[∫
Ω

∂

∂λ
M2(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

]
〈∇u′(t),∇u(t)〉

− 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ

+

〈
M(t, ‖∇u(t)‖2)

∂u

∂ν
(t), u′(t)

〉
Γ1

+
ς

2

d

dt

[
M(t, ‖∇u(t)‖2)

∫
Γ1

|u(x, t)|2dΓ1

]
− ς

2

d

dt

∫
Γ1

M ′(t, ‖∇u(t)‖2)�u(t)dΓ1,

(13)
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where

E(t) =
1

2

∫
Ω

|u′(t)|2dx+
1

2

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

+
1

γ + 2
‖u′(t)‖γ+2

γ+2 +
ς

2
M(t, ‖∇u(t)‖2)

∫
Γ1

|u(x, t)|2dΓ1

− ς

2

∫
Γ1

M ′(t, ‖∇u(t)‖2)�u(t)dΓ1.

(14)

Therefore, we have

d

dt
E(t) =

1

2

∫
Ω

∂

∂t
M1(x, t)|∇u(x, t)|2dx

+
1

2

∫
Ω

∂

∂t
M2(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

+

[∫
Ω

∂

∂λ
M2(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

]
〈∇u′(t),∇u(t)〉

− 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ

− ς
∫

Γ1

|u′(t)|2dΓ1 −
ς

2
k(0)

d

dt

∫
Γ1

|u|2dΓ1

+ ς

∫
Γ1

k(t)u0utdΓ1 − ς
∫

Γ1

(k′ ∗ u)utdΓ1

+
ς

2

d

dt

[
M(t, ‖∇u(t)‖2)

∫
Γ1

|u(x, t)|2dΓ1

]
− ς

2

d

dt

∫
Γ1

M ′(t, ‖∇u(t)‖2)�u(t)dΓ1.

(15)

From (B3), (7), Lemma 2.1 and Hölder inequality, we obtain

E′(t) ≤ ‖u(t)‖2
{
C1

2
g1(‖∇u(t)‖2) + C2g2(‖∇u(t)‖2)‖∇u′(t)‖‖u(t)‖

}
− 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ

− ς

2

∫
Γ1

|u′(t)|2dΓ1 +
ς

2
k2(t)

∫
Γ1

|u0|2dΓ1

+
ς

2
k′(t)

∫
Γ1

|u(t)|2dΓ1 −
ς

2

∫
Γ1

k′′�udΓ1

− ς

2

d

dt

[(∫ t

0

k′(τ)dτ

)
|u|2
]
dΓ1

(16)
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≤ ‖u(t)‖2
{
C1

2
g1(‖∇u(t)‖2) + C2g2(‖∇u(t)‖2)‖∇u′(t)‖‖u(t)‖

}
− 〈Mx(x, t, ‖∇u(t)‖2)∇u(t), u′(t)〉

−
∫ t

0

h(t− τ)〈a(x)∇u(τ),∇u′(t)〉dτ

− ς

2

∫
Γ1

|u′(t)|2dΓ1 +
ς

2
k2(t)

∫
Γ1

|u0|2dΓ1

+
ς

2
k′(t)

∫
Γ1

|u(t)|2dΓ1 −
ς

2

∫
Γ1

k′′�udΓ1.

By (B3), (10)and Young’s inequality, we have

E′(t) ≤‖u(t)‖2C̃1 + ε1m1‖∇u(t)‖2 +
m1

4ε1
‖u′(t)‖2

− 1

2

d

dt
[(h � u)(t)] +

1

2
(h′ � ∇u)(t)

+
1

2

d

dt

[
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds

]
− 1

2
h(t)‖

√
a(x)∇u(t)‖2

− ς

2

∫
Γ1

|u′(t)|2dΓ1 +
ς

2
k2(t)

∫
Γ1

|u0|2dΓ1

+
ς

2
k′(t)

∫
Γ1

|u(t)|2dΓ1 −
ς

2

∫
Γ1

k′′�udΓ1,

(17)

where

C̃1 =
C1

2
g1(‖∇u(t)‖2) + C2g2(‖∇u(t)‖2)‖∇u′(t)‖‖u(t)‖(18)

is a positive constant. And ε1 is also a positive constant.

In the boundary Γ1, note that

−k(0)u(t)− k′ ∗ u(t) =−
∫ t

0

k′(t− τ)[u(τ)− u(t)]dτ − k(t)u(t)

≤
(∫ t

0

|k′(τ)|dτ
) 1

2

[|k′|�u(x, t)]
1
2 + k(t)|u(t)|

≤|k(t)− k(0)| 12 [|k′|�u(t)]
1
2 + k(t)|u(t)|.

(19)
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Using (8) and (19), follows that∫
Γ1

M(t, ‖∇u(t)‖2)

∣∣∣∣∂u∂ν
∣∣∣∣2 dΓ1

≤Cb1
∫

Γ1

{|ut(t)|2 + k2(t)|u0|2 + k(0)|k′|�u(t) + k(0)k(t)|u(t)|2}dΓ1.

(20)

where Cb1 is a positive constant.
Here we use (7) to conclude the following estimates for the corresponding two

terms appearing in (22).

− ς
2

∫
Γ1

k′′�u(t)dΓ1 ≤ Cς1
∫

Γ1

k′�u(t)Γ1

− ς
2

∫
Γ1

k′|u(t)|2dΓ1 ≤ −Cς1
∫

Γ1

k|u(t)|2Γ1.

(21)

where Cς1 is a positive constant.
By using (20) and (21) in (22), we conclude

E′(t) +

∫
Γ1

M(t, ‖∇u(t)‖2)

∣∣∣∣∂u∂ν
∣∣∣∣2 dΓ1

≤‖u(t)‖2C̃1 + ε1m1‖∇u(t)‖2 +
m1

4ε1
‖u′(t)‖2

− 1

2

d

dt
[(h � u)(t)] +

1

2
(h′ � ∇u)(t)

+
1

2

d

dt

[
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds

]
− 1

2
h(t)‖

√
a(x)∇u(t)‖2

Cς2

∫
Γ1

{|ut(t)|2 + k2(t)|u0|2 + k(0)|k′|�u(t) + k(0)k(t)|u(t)|2}dΓ1

(22)

where Cς2 is a positive constant.
Define the new energy functional E1(t) as follows

E1(t) = E(t)+
1

2
(h�∇u)(t)−1

2
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds+

∫
Γ1

M(t, ‖∇u(t)‖2)

∣∣∣∣∂u∂ν
∣∣∣∣2 dΓ1.

(23)
Then from (A1), (B2), (22) and Lemma (2.3), we have

E′1(t) ≤‖u(t)‖2C̃1 + (ε1m1 + CB)‖∇u(t)‖2 +
m1

4ε1
‖u′(t)‖2

− ζ2
2

(h � ∇u)(t)− 1

2
a0h(t)‖∇u(t)‖2,

(24)

where CB is a positive constant relating Poincaré constant B and also, by (A2),
the energy E1(t) is a positive functional. Applying Poincarè inequality to (24),



78 D. KIM

we deduce

E′(t) ≤
(
CpC̃1 + ε1m1 −

1

2
a0h(t)

)
‖∇u(t)‖2

+
m1

4ε1
‖u′(t)‖2 − ζ2

2
(h � ∇u)(t),

(25)

where Cp is the Poincarè coefficient. Meanwhile, we note from (A1) and (A2)
that

E1(t) ≥1

2
‖u(t)‖2 +

1

2

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx

+
1

2

(
1− ‖a‖∞

∫ t

0

h(s)ds

)
‖∇u(t)‖2 +

1

2
(h � u)(t) +

1

γ + 2
‖u(t)‖γ+2

γ+2

≥l
[

1

2
‖u′(t)‖2 +

1

2

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx+
1

γ + 2
‖u(t)‖γ+2

γ+2

]
.

(26)

So, we deduce the relation 0 ≤ E(t) ≤ l−1E1(t). Therefore, the uniform decay
of E(t) is a result of the decay of E1(t). For positive constants ε2 and ε3, let us
define the perturbed modified energy by

F (t) = E1(t) + ε2ϕ(t) + ε3ψ(t), (27)

where
ϕ(t) = 〈u′(t), u(t)〉. (28)

and

ψ(t) = −
∫ t

0

h(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ. (29)

By using the Cauchy’s inequality, Hölder inequality and Poincarè inequality, there
exist positive constants α1, α2 such that for each t > 0

α1F (t) ≤ E1(t) ≤ α2F (t). (30)

Proposition 3.1. (Energy equivalence)

α1F (t) ≤ E1(t) ≤ α2F (t) for all t ≥ 0,

where

α1 =
1

max {1, ε4 + ε5, (ε4 + ε5)Cp}
> 0

and

α2 =
1

min {1− (ε4 + ε5),m0 − ε4Cp, 1− ε5Cp(1− l)}
> 0.

Proof. By the Cauchy inequality and Hölder inequality, we get

F (t) ≤E1(t) +
ε4
2
‖u′(t)‖2 +

ε4
2
‖u(t)‖2

+
ε5
2

∥∥∥∥∫ t

0

h(t− τ)a(x)(u(t)− u(τ))dτ

∥∥∥∥+
ε5
2
‖u′(t)‖,

(31)
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where ε4, ε5 are positive constants.
By using the Poincarè inequality, we have

F (t) ≤E1(t) +
ε4 + ε5

2
‖u′(t)‖2 +

ε4
2
‖u(t)‖2

+
ε5
2
‖a‖∞

∫ ∞
0

h(s)ds

∫ t

0

h(t− τ)
∥∥∥√a(x)(u(t)− u(τ))

∥∥∥2

dτ

≤E1(t) +
ε4 + ε5

2
‖u′(t)‖2 +

ε4
2
‖u(t)‖2

+
ε5
2
Cp(1− l)

∫ ∞
0

h(s)ds

∫ t

0

h(t− τ)
∥∥∥√a(x)(u(t)− u(τ))

∥∥∥2

dτ

≤E1(t) +
ε4 + ε5

2
‖u′(t)‖2 +

ε4
2
Cp‖∇u(t)‖2

+
ε5
2
Cp(1− l)(h � ∇u)(t)

≤max{1, ε4 + ε5, (ε4 + ε5)Cp}E1(t),

where Cp is the Poincarè coefficient. Besides, choosing ε4, ε5 small enough, we
have

F (t) ≥E1(t)− ε4 + ε5
2
‖u′(t)‖2 − ε4

2
Cp‖∇u(t)‖2

− ε5
2
Cp(1− l)(h � ∇u)(t)

≥1− (ε4 + ε5)

2
‖u′(t)‖2 +

m0 − ε4Cp
2

‖∇u(t)‖2

− 1

2
‖
√
a(x)∇u(t)‖2

∫ t

0

h(s)ds+
1

γ + 2
‖u(t)‖γ+2

γ+2

+
1− ε5Cp(1− l)

2
(h � ∇u)(t)

≥min{1− (ε4 + ε5),m0 − ε4Cp, 1− ε5Cp(1− l)}E1(t).

�

In fact, using (1), we have

ϕ′(t) =〈u′′(t), u(t)〉+ ‖u′(t)‖2.
=‖u′(t)‖2 +

〈
u(t),M(x, t, ‖∇u(t)‖2)∆u(x, t)

−
∫ t

0

h(t− τ)div[a(x)∇u(τ)]dτ − |u(t)|γu(t)

〉
=‖u′(t)‖2 −

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(t)|2dx

+

∫ t

0

h(t− τ) 〈a(x)∇u(τ),∇u(t)〉]dτ − |u(t)|γu(t).

(32)
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By Cauchy inequality and Young’s inequality, we have

∣∣∣∣∫ t

0

h(t− τ) 〈a(x)∇u(τ),∇u(t)〉]dτ
∣∣∣∣

≤1

2
‖∇u(t)‖2 +

1

2

∥∥∥∥∫ t

0

h(t− τ)(a(x)|∇u(τ)−∇u(t)|+ a(x)|∇u(t)|)dτ
∥∥∥∥2

≤1

2
‖∇u(t)‖2 +

(
1

2
+

1

8ε6

)∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(τ)−∇u(t)|dτ
∥∥∥∥2

+

(
1

2
+
ε6
2

)∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(t)|dτ
∥∥∥∥2

,

(33)

where ε6 with respect to Young’s inequality is a positive constant. Using the
assumption (A2) and (33), we get

∣∣∣∣∫ t

0

h(t− τ) 〈a(x)∇u(τ),∇u(t)〉]dτ
∣∣∣∣

≤
(

1

2
+

1

8ε6

)
‖a‖∞

∫ t

0

h(s)ds

∫ t

0

h(t− τ)
∥∥∥√a(x)(∇u(τ)−∇u(t))

∥∥∥2

dτ

+

(
1

2
+
ε6
2

)
‖∇u(t)‖2

(
‖a‖∞

∫ t

0

h(s)a(x)ds

)2

+
1

2
‖∇u(t)‖2

≤1

2
(1 + (1 + ε6)(1− l)2)‖∇u(t)‖2 +

(4ε6 + 1)(1− l)
8ε6

(h � ∇u)(t).

(34)

By combining (32) and (34), we conclude

ϕ′(t) ≤‖u′(t)‖2 +
1

2
(1− 2m0 + (1 + ε6)(1− l)2)‖∇u(t)‖2

+
(4ε6 + 1)(1− l)

8ε6
(h � ∇u)(t)− ‖u(t)‖γ+2

γ+2.
(35)
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Next, we estimate ψ′(t) as follows. In fact, using (1), we have

ψ′(t) =−
∫ t

0

h′(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ.

−
∫ t

0

h(t− τ)〈a(x)u′′(t), u(t)− u(τ)〉dτ − ‖
√
a(x)u′(t)‖2

∫ t

0

h(s)ds

=−
∫ t

0

h′(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ.

−
∫ t

0

h(t− τ)〈M(x, t, ‖∇u(t)‖2)a(x)∇u(t),∇u(t)−∇u(τ)〉dτ

−
〈∫ t

0

h(t− τ)a(x)∇u(τ)dτ,

∫ t

0

h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉
+

∫ t

0

h(t− τ)〈a(x)|u|γu, u(t)− u(τ)〉dτ

− ‖
√
a(x)u′(t)‖2

∫ t

0

h(s)ds.

(36)

Using Cauchy inequality, Poincarè inequality and (A1), we have

∣∣∣∣−∫ t

0

h′(t− τ)〈a(x)u′(t), u(t)− u(τ)〉dτ
∣∣∣∣

≤ε7‖∇u(t)‖2 +
ζ1
4ε7

∥∥∥∥∫ t

0

h(t− τ)a(x)|u(t)− u(τ)|dτ
∥∥∥∥2

≤ε7‖∇u(t)‖2 +
ζ1
4ε7

(1− l)C2
p(h � ∇u)(t),

(37)

where ε7 is a positive constant with respect to Cauchy inequality and Cp is the
Poincarè coefficient. Similarly, using Cauchy inequality and (B2), we get

∣∣∣∣−∫ t

0

h(t− τ)〈M(x, t, ‖∇u(t)‖2)a(x)∇u(t),∇u(t)−∇u(τ)〉dτ
∣∣∣∣

≤ε8f2(‖∇u(t)‖2)‖u′(t)‖2 +
C0(1− l)

4ε8
(h � ∇u)(t)

(38)
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and

∣∣∣∣−〈∫ t

0

h(t− τ)a(x)∇u(τ)dτ,

∫ t

0

h(t− τ)a(x)(∇u(t)−∇u(τ))dτ

〉∣∣∣∣
≤ε9

∥∥∥∥∫ t

0

h(t− τ)(a(x)|∇u(t)−∇u(τ)|+ a(x)|∇u(t)|)dτ
∥∥∥∥2

+
1

4ε9

(
‖a‖∞

∫ t

0

h(s)ds

)∫ t

0

h(t− τ)‖
√
a(x)(∇u(t)−∇u(τ))‖2dτ

≤2ε9

(∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(t)−∇u(τ)|dτ
∥∥∥∥2

+

∥∥∥∥∫ t

0

h(t− τ)a(x)|∇u(t)|dτ
∥∥∥∥2
)

+
1− l
4ε9

(h � ∇u)(t)

≤
(

2ε9 +
1

4ε9

)
(1− l)(h � ∇u)(t) + 2ε9(1− l)2‖∇u(t)‖2,

(39)

where ε8, ε9 are positive constants with respect to Cauchy inequality. And also,
using Cauchy inequality and Poincarè inequality, we have∣∣∣∣∫ t

0

h(t− τ)〈a(x)|u(t)|γu, u(t)− u(τ)〉dτ
∣∣∣∣

≤ε10‖u(t)‖2(γ+1)
2(γ+1) +

Cp(1− l)
4ε10

(h � ∇u)(t),

(40)

where ε10 is a positive constant with respect to Cauchy inequality and Cp is the

Poincarè coefficient. Noting H1(Ω) ↪→ L2(γ+1)(Ω) and using Poincarè inequality,
(23), (24) and (40), we get∣∣∣∣∫ t

0

h(t− τ)〈a(x)|u(t)|γu, u(t)− u(τ)〉dτ
∣∣∣∣

≤ε10C
2(γ+1)
p

(
2E1(0)

l

)γ
‖∇u(t)‖2 +

Cp(1− l)
4ε10

(h � ∇u)(t),

(41)

where Cp is the Poincarè coefficient. Combining (34)-(39) and (41) and also using
(A2), we deduce

ψ′(t) ≤
(
ε7 − a2

0

∫ t

0

h(s)ds

)
‖u′(t)‖2

+

(
ε8f

2(‖∇u(t)‖2) + 2ε9(1− l)2 + ε10C
2(γ+1)
p

(
2E1(0)

l

)γ)
‖∇u(t)‖2

+

(
ζ1
4ε7

C2
p +

C0

4ε8
+ 2ε9 +

1

4ε9
+

Cp
4ε10

)
(1− l)(h � ∇u)(t).

(42)
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Combining (25), (27), (35) and (42), we deduce

F (t) = E1(t) + ε2ϕ(t) + ε3ψ(t)

≤w1‖u′(t)‖2 + w2

∫
Ω

M(x, t, ‖∇u(t)‖2)|∇u(x, t)|2dx+ w3(h � ∇u(t))− ‖u(t)‖γ+2
γ+2,

(43)

where

w1 =
m1

4ε1
+ ε2 + ε3

(
ε7 − a2

0

∫ t

0

h(s)ds

)
,

w2 =f(‖∇u(t)‖2)C0

[
CpC̃1 + ε1m1 + CB −

1

2
a0h(t)

]
+
ε2f(‖∇u(t)‖2)C0

2
(1− 2m0 + (1 + ε6)(1− l)2)

+ ε3f(‖∇u(t)‖2)C0

(
ε8f

2(‖∇u(t)‖2) + 2ε9(1− l)2 + ε10C
2(γ+1)
p

(
2E1(0)

l

)γ)
,

w3 =− ζ2
2

+

[
ε2(4ε6 + 1)

8ε6
+ ε3

(
ζ1
4ε7

C2
p +

C0

4ε8
+ 2ε9 +

1

4ε9
+

Cp
4ε10

)]
(1− l),

By using the smallness condition in (A2) and (B2), for the fixed εi, i = 1, 4, · · · , 10,
we choose εj > 0, j = 2, 3 such that wk < 0, k = 1, 2, 3. According to (23) and
(43), there exist a positive constant s such that

F (t) ≤ −sE1(t) (44)

for all t which is larger than the fixed time T0. We conclude from (30) and (44)
that

F (t) ≤ −sα1F (t)

for all t which is larger than the fixed time T0. That is, for all t which is larger
than the fixed time T0,

F (t) ≤ F (T0)esα1T0e−sα1t. (45)

Therefore, we deduce from (30), (26) and (45) that there are positive constants
κ and ϑ such that

E(t) ≤ κ exp{−ϑt} for all t ≥ 0 and as t→ +∞.

�
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