East Asian Math. J.
Vol. 34 (2018), No. 1, pp. 069-084
YNMS
http://dx.doi.org/10.7858/eamj.2018.008

EXPONENTIAL DECAY FOR THE SOLUTION OF THE VISCOELASTIC KIRCHHOFF TYPE EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

Daewook Kim

Abstract

In this paper, we study the viscoelastic Kirchhoff type equation with a nonlinear source for each independent kernels h and g with respect to Volterra terms. Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the uniform decay rate of the Kirchhoff type energy.

1. Introduction

In the present work, we are concerned with the following problem:

$$
\begin{align*}
& u_{t t}(x, t)-M\left(x, t,\|\nabla u(t)\|^{2}\right) \Delta u(x, t) \tag{1}\\
& +\int_{0}^{t} h(t-\tau) \operatorname{div}[a(x) \nabla u(\tau)] d \tau+|u|^{\gamma} u=0 \quad \text { in } \quad \Omega \times(0, T), \\
& u(x, t)=0 \quad \text { on } \quad \Gamma_{0} \times(0, T), \tag{2}\\
& u(x, t)+\int_{0}^{t} g(t-\tau) M\left(x, \tau,\|\nabla u(\tau)\|^{2}\right) \frac{\partial u}{\partial \nu}(\tau) d \tau=0 \quad \text { on } \quad \Gamma_{1} \times(0, T),(3) \tag{3}\\
& {[a(x) \nabla u(\tau)] \cdot \nu=0 \quad \text { on } \quad \Gamma_{2} \times(0, t),} \tag{4}\\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x) \quad \text { in } \Omega, \tag{5}
\end{align*}
$$

where Ω be a bounded open set of $\mathbb{R}^{N}(N \geq 1)$ with a smooth boundary Γ of class $C^{2}, \gamma>0$, and other conditions such as M, h, a be in next section. Indeed, $t<T$ in (4). We consider $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ having positive Lebesque measures and $\overline{\Gamma_{0}} \cap \overline{\Gamma_{1}} \cap \overline{\Gamma_{2}}=\phi$. Let ν be the outward normal to Γ and $T>0$ be a real number. In fact, u_{0}, u_{1} are initially given functions and $u(x, t)$ is the transversal displacement of the strip at spatial coordinate x and time t in the real world application.

Our system works independently with respect to kernels for Volterra terms and spatial part for the Kirchhoff term under internal space or not. Physically,

[^0]first, in the space Ω, the Volterra energy is only acted on h. Second, in the space Γ_{0}, There is no Volterra energy. Third, the Volterra energy is only acted on g in the space Γ_{1} And also, the main system has a difference when it comes to the Kirchhoff type term under internal space or not in this work. More precisely, the Kirchhoff type term is not affected only by spatial part on the boundaries That is, not only $M\left(x, t,\|\nabla u(t)\|^{2}\right)=0$ on the space Γ_{0} but also $M\left(x, t,\|\nabla u(t)\|^{2}\right)=$ $M\left(t,\|\nabla u(t)\|^{2}\right)$ on the space Γ_{1} in this work. So we let you know the follows again:
\[

$$
\begin{equation*}
M\left(x, t,\|\nabla u(t)\|^{2}\right):=M\left(t,\|\nabla u(t)\|^{2}\right) \quad \text { on } \quad \Gamma_{1} . \tag{6}
\end{equation*}
$$

\]

This problem has its origin in the mathematical description of system in real world from the mathematical modeling for axially moving viscoelastic materials. It is well known that viscoelastic materials exhibit natural damping, which is due to the special property of these materials to retain a memory of their past history. From the mathematical point of view, these damping effects are modeled by integro-differential operators. For these reasons, there are not exist weak or strong damping term in our problem (1)-(5). Recently, problems with Timoshenko or basic hyperbolic type for viscoelastic materials have been considered by many authors (See [1, 2]). Besides, many engineering devices involve the transverse vibration of axially moving strings. Axially moving string is a typical model that is widely used, especially when the subject is long and narrow enough and has a negligible flexural rigidity, to represent threads, wires, magnetic tapes, belts, band saws, and cables. Various mathematical models and simulations have been established for a better understanding with linear or nonlinear dynamic behavior of these moving continua $[3,4,5,6,7,8,9]$. The mathematical model for axially moving strings was first introduced by Kirchhoff [10] (and see Carrier [3]), and the original equation is given in the form of

$$
\rho h \frac{\partial^{2} u}{\partial t^{2}}=\left(p_{0}+\frac{E h}{2 L} \int_{0}^{L}\left(\frac{\partial u}{\partial x}\right)^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}
$$

for $0<x<L, t \geq 0$, where $u=u(x, t)$ is the lateral displacement at the space coordinate x and time $t ; E$, the young's modulus; ρ, the mass density; h, the cross section area; L, the length; and p_{0}, the initial axial tension. Recently, problems with the extended Kirchhoff type equation which is concerning axially moving heterogeneous or non heterogeneous materials (nonlinear vibrations of beams, strings, plates, and membranes) have been considered by many authors (See [11, 12, 13, 14]).

In this paper, we will mainly concern on an aspect of decay rate of the Kirchhoff type energy of the system. Our purpose is focused on not only main equation but also boundary condition which are involved in memory effects for the problem otherwise the previous result $[15,16,17]$. We get its proof by using the smallness condition functions with respect to Kirchhoff coefficient and the relaxation function. In fact, the difference of the energy consist in Kirchhoff type potential energy.

This paper organized as follows. In Section 2, we will present some notations, material needed (assumptions, lemmas and so on) for our work and state a global existence and energy decay rate theorem (main result). Section 3 contains the proof of our main result.

2. Preliminaries and main results

We first introduce the elementary bracket pairing in $\Omega \subset \mathbb{R}^{N}$

$$
\langle\varphi, \psi\rangle \equiv \int_{\Omega}(\varphi, \psi) d x
$$

provided that $(\varphi, \psi) \in L^{1}(\Omega)$. And we set the norms as follows.

$$
\|u\|_{L^{p}(\Omega)}=\left(\int_{\Omega}|u|^{p} d x\right)^{\frac{1}{p}}
$$

To simplify the notations, we denote $\|u\|_{L^{2}(\Omega)},\|u\|_{L^{1}(0,+\infty)},\|v\|_{L^{\infty}(0,+\infty)}$ by $\|u\|,\|v\|_{L^{1}},\|v\|_{L^{\infty}}$ respectively.

In the sequel we state the general hypotheses.
$\left(\mathrm{A}_{1}\right) h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a bounded C^{1} function satisfying $h(0)>0$, and there exists positive constant $t_{0}, \zeta_{1}, \zeta_{2}, \zeta_{3}$ such that

$$
\begin{aligned}
-\zeta_{1} & \leq h^{\prime}(t)
\end{aligned} \leq-\zeta_{2} h(t), \quad \forall t>t_{0}, ~ 子 h^{\prime \prime}(t) \leq \zeta_{3} h(t), \quad \forall t>t_{0} .
$$

$\left(\mathrm{A}_{2}\right) a: \Omega \rightarrow \mathbb{R}^{+}$is a nonnegative bounded function and $a(x) \geq a_{0}>0$ on Ω with

$$
\frac{m_{0}}{a_{0}} \geq 1-\|a\|_{\infty} \int_{0}^{\infty} h(s) d s=l>0
$$

where m_{0} is in $\left(\mathrm{B}_{2}\right)$. And also, the following smallness condition satisfy

$$
\epsilon_{7}<a_{0}^{2} \int_{0}^{t} h(s) d s
$$

$\left(\mathrm{A}_{3}\right) \gamma$ satisfies

$$
\begin{gathered}
0 \leq \gamma \leq \frac{2}{n-2}, \quad n \geq 3 \\
\gamma \geq 0, \quad n=1,2
\end{gathered}
$$

$\left(\mathrm{B}_{1}\right) M(x, t, \lambda)$ is a real-valued function of class C^{2} on $x \in \bar{\Omega}, t \geq 0, \lambda \leq 0$.
$\left(\mathrm{B}_{2}\right) 0<m_{0} \leq M(x, t, \lambda) \leq C_{0} f(\lambda)$ with $M(x, t, \lambda)=M_{1}(x, t)+M_{2}(x, t, \lambda)$.
And also, the following smallness condition satisfy

$$
f(\lambda)<\sqrt{\frac{\frac{a_{0} h(t)}{2}-C_{p} \widetilde{C_{1}}+\epsilon_{2}\left(m_{0}-\frac{1}{2}\right)}{\epsilon_{3} \epsilon_{8}}}
$$

(B_{3}) $\frac{\partial M_{1}}{\partial t} \leq 0,\left|\frac{\partial M_{2}}{\partial t}\right| \leq C_{1} g_{1}(\lambda),\left|\frac{\partial M}{\partial \lambda}\right| \leq C_{2} g_{2}(\lambda), 0<m_{1} \leq M_{x}(x, t, \lambda)$.
$\left(\mathrm{B}_{4}\right) f, g_{1}, g_{2} \in C^{1}\left([0,+\infty) ; \mathbb{R}_{+}\right)$are strictly increasing.
Furthermore, $C_{i}(i=0,1,2)$ is a positive constant.

Next, we assume that the kernel g is positive and k satisfies:

$$
\begin{align*}
0 & <k(t) \leq b_{0} e^{-s_{0} t} \\
-b_{1} k(t) & \leq k^{\prime}(t) \leq-b_{2} k(t) \tag{7}\\
-b_{3} k^{\prime}(t) & \leq k^{\prime \prime}(t) \leq-b_{4} k^{\prime}(t)
\end{align*}
$$

for some positive constants $b_{i}, i=0,1,2,3,4$ and s_{0}. To facilitate our analysis, we introduce the following binary operators:

$$
\begin{gathered}
(g \square u)(t)=\int_{0}^{t} g(t-\tau)|u(t)-u(\tau)|^{2} d \tau \\
(g * u)(t)=\int_{0}^{t} g(t-\tau) u(\tau) d \tau
\end{gathered}
$$

where $*$ is the convolution product. Differentiating (3) we arrive at the Volterra equation:

$$
M\left(t,\|\nabla u(t)\|^{2}\right) \frac{\partial u}{\partial \nu}+\frac{1}{g(0)} g^{\prime} * M\left(t,\|\nabla u(t)\|^{2}\right) \frac{\partial u}{\partial \nu}=-\frac{1}{g(0)} u_{t} .
$$

Using the Volterra inverse operator, we get

$$
M\left(t,\|\nabla u(t)\|^{2}\right) \frac{\partial u}{\partial \nu}=-\frac{1}{g(0)} u_{t}+k * u_{t}
$$

where the resolvent kernel satisfy

$$
k+\frac{1}{g(0)} g^{\prime} * k=-\frac{1}{g(0)} g^{\prime} .
$$

With $\varsigma=\frac{1}{g(0)}$ and using the above identity, we obtain

$$
\begin{equation*}
M\left(t,\|\nabla u(t)\|^{2}\right) \frac{\partial u}{\partial \nu}=-\varsigma\left\{u_{t}+k(0) u-k(t) u_{0}+k^{\prime} * u\right\} \tag{8}
\end{equation*}
$$

In the following, we give a lemma which will be useful in this paper.
Lemma 2.1. For $g, \Psi \in C^{1}([0, \infty): \mathbb{R})$. Then we have

$$
\begin{equation*}
(g * \psi) \Psi_{t}=-\frac{1}{2} g(t)|\psi(t)|^{2}+\frac{1}{2} g^{\prime} \square \psi-\frac{1}{2} \frac{d}{d t}\left[g \square \psi-\left(\int_{0}^{t} g(s) d s\right)|\psi|^{2}\right] \tag{9}
\end{equation*}
$$

Proof. The proof of this lemma follows by differentiating the term $g \square \psi$.
Lemma 2.2. Denote $(h \diamond u)(t)=\int_{0}^{t} h(t-\tau)\|\sqrt{a(x)}(u(t)-u(\tau))\|^{2} d \tau$. Then we have

$$
\begin{align*}
\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau), \nabla u^{\prime}(t)\right\rangle d \tau= & -\frac{1}{2} \frac{d}{d t}[(h \diamond u)(t)]+\frac{1}{2}\left(h^{\prime} \diamond u\right)(t) \\
& +\frac{1}{2} \frac{d}{d t}\left[\|\sqrt{a(x)} \nabla u(t)\|^{2} \int_{0}^{t} h(s) d s\right] \tag{10}\\
& -\frac{1}{2} h(t)\|\sqrt{a(x)} \nabla u(t)\|^{2} .
\end{align*}
$$

Proof. A direct computation shows that

$$
\begin{aligned}
\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau), \nabla u^{\prime}(t)\right\rangle d \tau= & \int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau)-a(x) \nabla u(t), \nabla u^{\prime}(t)\right\rangle d \tau \\
& +\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(t), \nabla u^{\prime}(t)\right\rangle d \tau \\
= & -\frac{1}{2} \int_{0}^{t} h(t-\tau)\left[\frac{d}{d t}\|\sqrt{a(x)}(\nabla u(\tau)-\nabla u(t))\|^{2}\right] d \tau \\
& +\frac{1}{2} \int_{0}^{t} h(t-\tau)\left[\frac{d}{d t}\|\sqrt{a(x)} \nabla u(t)\|^{2}\right] d \tau \\
= & -\frac{1}{2} \frac{d}{d t}\left[\int_{0}^{t} h(t-\tau)\|\sqrt{a(x)}(\nabla u(\tau)-\nabla u(t))\|^{2} d \tau\right] \\
& +\frac{1}{2} \int_{0}^{t} h^{\prime}(t-\tau)\|\sqrt{a(x)}(\nabla u(\tau)-\nabla u(t))\|^{2} d \tau \\
& +\frac{1}{2} \frac{d}{d t} \int_{0}^{t} h(t-\tau)\|\sqrt{a(x)} \nabla u(t)\|^{2} d \tau \\
& -\frac{1}{2} h(t)\|\sqrt{a(x)} \nabla u(t)\|^{2} .
\end{aligned}
$$

Lemma 2.3. (General Poincaré Inequality).

Denote $H_{\Gamma_{0}}^{1}(\Omega)=\left\{u\left|u \in H^{1}(\Omega), u\right|_{\Gamma_{0}}=0\right\}$ and meas $\left(\Gamma_{0}\right)>0$. Then there exists a positive constant B such that $\|u\|_{L^{2}(\Gamma)} \leq B\|\nabla u\|_{L^{2}(\Omega)}$, for all $u \in H_{\Gamma_{0}}^{1}(\Omega)$.

Proof. The proof can be found in [18].
Then, we can state our result as follows.
Theorem 2.4. Let the assumptions $\left(A_{1}\right),\left(A_{3}\right)$ and $\left(B_{1}\right)-\left(B_{4}\right)$ and the relating conditions (7) and (8) to the volterra term on boundary hold and the sobolev space V is $\left\{u \mid u \in H_{0}^{1}(\Omega), u=0 \quad\right.$ on $\left.\quad \Gamma_{0}\right\}$. If $\left(u_{0}, u_{1}\right) \in\left(H^{2}(\Omega) \cap V\right) \times V$ and satisfy the compatibility condition

$$
\begin{equation*}
M\left(0,\left\|\nabla u_{0}\right\|^{2}\right) \frac{\partial u_{0}}{\partial \nu}=-\varsigma u_{1} \quad \text { on } \Gamma_{1} . \tag{11}
\end{equation*}
$$

Then there exists a unique solution u of the problem (1)-(5) satisfying

$$
u \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), u^{\prime} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right), u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
$$

and

$$
u(x, t) \rightarrow u_{0}(x) \text { in } V \cap H^{2}(\Omega) ; \quad u^{\prime}(x, t) \rightarrow u_{1}(x) \text { in } V,
$$

as $t \rightarrow 0$
Proof. By using Galerkin's approximation and a routine procedure similar to that of cite [12, 1], we can the global existence result for the solution subject to (1)-(5)
under the assumptions $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$ and $\left(\mathrm{B}_{1}\right)-\left(\mathrm{B}_{4}\right)$ and the relating conditions (7) and (8) to the volterra term on boundary.

Theorem 2.5. Let u be the global solution of the problem (1)-(5) with the above all conditions. We define the Kirchhoff type energy functional $E(t)$ as

$$
\begin{gathered}
E(t)=\frac{1}{2} \int_{\Omega}\left|u^{\prime}(t)\right|^{2} d x+\frac{1}{2} \int_{\Omega} M\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x \\
+\frac{1}{\gamma+2}\left\|u^{\prime}(t)\right\|_{\gamma+2}^{\gamma+2}+\frac{\varsigma}{2}\left(M\left(t,\|\nabla u(t)\|^{2}\right) \int_{\Gamma_{1}}|u(x, t)|^{2} d \Gamma_{1}\right. \\
\left.-\int_{\Gamma_{1}} M^{\prime}\left(t,\|\nabla u(t)\|^{2}\right) \square u(t) d \Gamma_{1}\right) .
\end{gathered}
$$

Then the energy functional decays exponentially to zero as the time goes to infinity, that is,

$$
E(t) \leq \kappa e^{-\vartheta t}, \forall t \geq 0
$$

where κ, ϑ are positive constants.

3. Proof of Theorem 2.5 (Energy decay)

Proof. Multiplying u^{\prime} on both sides of Eq.(1), integrating the resulting equations over Ω, and using the Green formula, (6) and (3), we have

$$
\begin{align*}
\left\langle u^{\prime \prime}(t), u^{\prime}(t)\right\rangle & +\left\langle M\left(x, t,\|\nabla u(t)\|^{2}\right) \nabla u(t), \nabla u^{\prime}(t)\right\rangle \\
& +\left\langle M_{x}\left(x, t,\|\nabla u(t)\|^{2}\right) \nabla u(t), u^{\prime}(t)\right\rangle \\
& +\left\langle M\left(t,\|\nabla u(t)\|^{2}\right) \frac{\partial u}{\partial \nu}(t), u^{\prime}(t)\right\rangle_{\Gamma_{1}} \tag{12}\\
& \left.-\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau), \nabla u^{\prime}(t)\right\rangle d \tau+\left.\langle | u\right|^{\gamma} u, u^{\prime}\right\rangle=0
\end{align*}
$$

that is

$$
\begin{aligned}
\frac{d}{d t} E(t) & =\frac{1}{2} \int_{\Omega} \frac{\partial}{\partial t} M_{1}(x, t)|\nabla u(x, t)|^{2} d x \\
& +\frac{1}{2} \int_{\Omega} \frac{\partial}{\partial t} M_{2}\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x \\
& +\left[\int_{\Omega} \frac{\partial}{\partial \lambda} M_{2}\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x\right]\left\langle\nabla u^{\prime}(t), \nabla u(t)\right\rangle \\
& -\left\langle M_{x}\left(x, t,\|\nabla u(t)\|^{2}\right) \nabla u(t), u^{\prime}(t)\right\rangle \\
& -\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau), \nabla u^{\prime}(t)\right\rangle d \tau \\
& +\left\langle M\left(t,\|\nabla u(t)\|^{2}\right) \frac{\partial u}{\partial \nu}(t), u^{\prime}(t)\right\rangle_{\Gamma_{1}} \\
& +\frac{\varsigma}{2} \frac{d}{d t}\left[M\left(t,\|\nabla u(t)\|^{2}\right) \int_{\Gamma_{1}}|u(x, t)|^{2} d \Gamma_{1}\right] \\
& -\frac{\varsigma}{2} \frac{d}{d t} \int_{\Gamma_{1}} M^{\prime}\left(t,\|\nabla u(t)\|^{2}\right) \square u(t) d \Gamma_{1},
\end{aligned}
$$

where

$$
\begin{align*}
E(t) & =\frac{1}{2} \int_{\Omega}\left|u^{\prime}(t)\right|^{2} d x+\frac{1}{2} \int_{\Omega} M\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x \\
& +\frac{1}{\gamma+2}\left\|u^{\prime}(t)\right\|_{\gamma+2}^{\gamma+2}+\frac{\varsigma}{2} M\left(t,\|\nabla u(t)\|^{2}\right) \int_{\Gamma_{1}}|u(x, t)|^{2} d \Gamma_{1} \tag{14}\\
& -\frac{\varsigma}{2} \int_{\Gamma_{1}} M^{\prime}\left(t,\|\nabla u(t)\|^{2}\right) \square u(t) d \Gamma_{1} .
\end{align*}
$$

Therefore, we have

$$
\begin{align*}
\frac{d}{d t} E(t) & =\frac{1}{2} \int_{\Omega} \frac{\partial}{\partial t} M_{1}(x, t)|\nabla u(x, t)|^{2} d x \\
& +\frac{1}{2} \int_{\Omega} \frac{\partial}{\partial t} M_{2}\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x \\
& +\left[\int_{\Omega} \frac{\partial}{\partial \lambda} M_{2}\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x\right]\left\langle\nabla u^{\prime}(t), \nabla u(t)\right\rangle \\
& -\left\langle M_{x}\left(x, t,\|\nabla u(t)\|^{2}\right) \nabla u(t), u^{\prime}(t)\right\rangle \\
& -\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau), \nabla u^{\prime}(t)\right\rangle d \tau \tag{15}\\
& -\varsigma \int_{\Gamma_{1}}\left|u^{\prime}(t)\right|^{2} d \Gamma_{1}-\frac{\varsigma}{2} k(0) \frac{d}{d t} \int_{\Gamma_{1}}|u|^{2} d \Gamma_{1} \\
& +\varsigma \int_{\Gamma_{1}} k(t) u_{0} u_{t} d \Gamma_{1}-\varsigma \int_{\Gamma_{1}}\left(k^{\prime} * u\right) u_{t} d \Gamma_{1} \\
& +\frac{\varsigma}{2} \frac{d}{d t}\left[M\left(t,\|\nabla u(t)\|^{2}\right) \int_{\Gamma_{1}}|u(x, t)|^{2} d \Gamma_{1}\right] \\
& -\frac{\varsigma}{2} \frac{d}{d t} \int_{\Gamma_{1}} M^{\prime}\left(t,\|\nabla u(t)\|^{2}\right) \square u(t) d \Gamma_{1} .
\end{align*}
$$

From $\left(B_{3}\right)$, (7), Lemma 2.1 and Hölder inequality, we obtain

$$
\begin{align*}
E^{\prime}(t) & \leq\|u(t)\|^{2}\left\{\frac{C_{1}}{2} g_{1}\left(\|\nabla u(t)\|^{2}\right)+C_{2} g_{2}\left(\|\nabla u(t)\|^{2}\right)\left\|\nabla u^{\prime}(t)\right\|\|u(t)\|\right\} \\
& -\left\langle M_{x}\left(x, t,\|\nabla u(t)\|^{2}\right) \nabla u(t), u^{\prime}(t)\right\rangle \\
& -\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau), \nabla u^{\prime}(t)\right\rangle d \tau \\
& -\frac{\varsigma}{2} \int_{\Gamma_{1}}\left|u^{\prime}(t)\right|^{2} d \Gamma_{1}+\frac{\varsigma}{2} k^{2}(t) \int_{\Gamma_{1}}\left|u_{0}\right|^{2} d \Gamma_{1} \tag{16}\\
& +\frac{\varsigma}{2} k^{\prime}(t) \int_{\Gamma_{1}}|u(t)|^{2} d \Gamma_{1}-\frac{\varsigma}{2} \int_{\Gamma_{1}} k^{\prime \prime} \square u d \Gamma_{1} \\
& -\frac{\varsigma}{2} \frac{d}{d t}\left[\left(\int_{0}^{t} k^{\prime}(\tau) d \tau\right)|u|^{2}\right] d \Gamma_{1}
\end{align*}
$$

$$
\begin{aligned}
& \leq\|u(t)\|^{2}\left\{\frac{C_{1}}{2} g_{1}\left(\|\nabla u(t)\|^{2}\right)+C_{2} g_{2}\left(\|\nabla u(t)\|^{2}\right)\left\|\nabla u^{\prime}(t)\right\|\|u(t)\|\right\} \\
& -\left\langle M_{x}\left(x, t,\|\nabla u(t)\|^{2}\right) \nabla u(t), u^{\prime}(t)\right\rangle \\
& -\int_{0}^{t} h(t-\tau)\left\langle a(x) \nabla u(\tau), \nabla u^{\prime}(t)\right\rangle d \tau \\
& -\frac{\varsigma}{2} \int_{\Gamma_{1}}\left|u^{\prime}(t)\right|^{2} d \Gamma_{1}+\frac{\varsigma}{2} k^{2}(t) \int_{\Gamma_{1}}\left|u_{0}\right|^{2} d \Gamma_{1} \\
& +\frac{\varsigma}{2} k^{\prime}(t) \int_{\Gamma_{1}}|u(t)|^{2} d \Gamma_{1}-\frac{\varsigma}{2} \int_{\Gamma_{1}} k^{\prime \prime} \square u d \Gamma_{1} .
\end{aligned}
$$

By $\left(B_{3}\right)$, (10)and Young's inequality, we have

$$
\begin{align*}
E^{\prime}(t) \leq & \|u(t)\|^{2} \widetilde{C_{1}}+\epsilon_{1} m_{1}\|\nabla u(t)\|^{2}+\frac{m_{1}}{4 \epsilon_{1}}\left\|u^{\prime}(t)\right\|^{2} \\
& -\frac{1}{2} \frac{d}{d t}[(h \diamond u)(t)]+\frac{1}{2}\left(h^{\prime} \diamond \nabla u\right)(t) \\
& +\frac{1}{2} \frac{d}{d t}\left[\|\sqrt{a(x)} \nabla u(t)\|^{2} \int_{0}^{t} h(s) d s\right] \\
& -\frac{1}{2} h(t)\|\sqrt{a(x)} \nabla u(t)\|^{2} \tag{17}\\
& -\frac{\varsigma}{2} \int_{\Gamma_{1}}\left|u^{\prime}(t)\right|^{2} d \Gamma_{1}+\frac{\varsigma}{2} k^{2}(t) \int_{\Gamma_{1}}\left|u_{0}\right|^{2} d \Gamma_{1} \\
& +\frac{\varsigma}{2} k^{\prime}(t) \int_{\Gamma_{1}}|u(t)|^{2} d \Gamma_{1}-\frac{\varsigma}{2} \int_{\Gamma_{1}} k^{\prime \prime} \square u d \Gamma_{1},
\end{align*}
$$

where

$$
\begin{equation*}
\widetilde{C_{1}}=\frac{C_{1}}{2} g_{1}\left(\|\nabla u(t)\|^{2}\right)+C_{2} g_{2}\left(\|\nabla u(t)\|^{2}\right)\left\|\nabla u^{\prime}(t)\right\|\|u(t)\| \tag{18}
\end{equation*}
$$

is a positive constant. And ϵ_{1} is also a positive constant.
In the boundary Γ_{1}, note that

$$
\begin{align*}
-k(0) u(t)-k^{\prime} * u(t) & =-\int_{0}^{t} k^{\prime}(t-\tau)[u(\tau)-u(t)] d \tau-k(t) u(t) \\
& \leq\left(\int_{0}^{t}\left|k^{\prime}(\tau)\right| d \tau\right)^{\frac{1}{2}}\left[\left|k^{\prime}\right| \square u(x, t)\right]^{\frac{1}{2}}+k(t)|u(t)| \tag{19}\\
& \leq|k(t)-k(0)|^{\frac{1}{2}}\left[\left|k^{\prime}\right| \square u(t)\right]^{\frac{1}{2}}+k(t)|u(t)|
\end{align*}
$$

Using (8) and (19), follows that

$$
\begin{align*}
& \int_{\Gamma_{1}} M\left(t,\|\nabla u(t)\|^{2}\right)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma_{1} \tag{20}\\
\leq & C_{b_{1}} \int_{\Gamma_{1}}\left\{\left|u_{t}(t)\right|^{2}+k^{2}(t)\left|u_{0}\right|^{2}+k(0)\left|k^{\prime}\right| \square u(t)+k(0) k(t)|u(t)|^{2}\right\} d \Gamma_{1} .
\end{align*}
$$

where $C_{b_{1}}$ is a positive constant.
Here we use (7) to conclude the following estimates for the corresponding two terms appearing in (22).

$$
\begin{align*}
& -\frac{\varsigma}{2} \int_{\Gamma_{1}} k^{\prime \prime} \square u(t) d \Gamma_{1} \leq C_{\varsigma_{1}} \int_{\Gamma_{1}} k^{\prime} \square u(t) \Gamma_{1} \tag{21}\\
- & \frac{\varsigma}{2} \int_{\Gamma_{1}} k^{\prime}|u(t)|^{2} d \Gamma_{1} \leq-C_{\varsigma_{1}} \int_{\Gamma_{1}} k|u(t)|^{2} \Gamma_{1} .
\end{align*}
$$

where $C_{\varsigma_{1}}$ is a positive constant.
By using (20) and (21) in (22), we conclude

$$
\begin{align*}
& \quad E^{\prime}(t)+\int_{\Gamma_{1}} M\left(t,\|\nabla u(t)\|^{2}\right)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma_{1} \\
& \leq\|u(t)\|^{2} \widetilde{C_{1}}+\epsilon_{1} m_{1}\|\nabla u(t)\|^{2}+\frac{m_{1}}{4 \epsilon_{1}}\left\|u^{\prime}(t)\right\|^{2} \\
& \quad-\frac{1}{2} \frac{d}{d t}[(h \diamond u)(t)]+\frac{1}{2}\left(h^{\prime} \diamond \nabla u\right)(t) \\
& \quad+\frac{1}{2} \frac{d}{d t}\left[\|\sqrt{a(x)} \nabla u(t)\|^{2} \int_{0}^{t} h(s) d s\right] \tag{22}\\
& \quad-\frac{1}{2} h(t)\|\sqrt{a(x)} \nabla u(t)\|^{2} \\
& \quad C_{\varsigma_{2}} \int_{\Gamma_{1}}\left\{\left|u_{t}(t)\right|^{2}+k^{2}(t)\left|u_{0}\right|^{2}+k(0)\left|k^{\prime}\right| \square u(t)+k(0) k(t)|u(t)|^{2}\right\} d \Gamma_{1}
\end{align*}
$$

where $C_{\varsigma_{2}}$ is a positive constant.
Define the new energy functional $E_{1}(t)$ as follows

$$
\begin{equation*}
E_{1}(t)=E(t)+\frac{1}{2}(h \diamond \nabla u)(t)-\frac{1}{2}\|\sqrt{a(x)} \nabla u(t)\|^{2} \int_{0}^{t} h(s) d s+\int_{\Gamma_{1}} M\left(t,\|\nabla u(t)\|^{2}\right)\left|\frac{\partial u}{\partial \nu}\right|^{2} d \Gamma_{1} . \tag{23}
\end{equation*}
$$

Then from $\left(\mathrm{A}_{1}\right),\left(\mathrm{B}_{2}\right),(22)$ and Lemma (2.3), we have

$$
\begin{align*}
E_{1}^{\prime}(t) \leq & \|u(t)\|^{2} \widetilde{C_{1}}+\left(\epsilon_{1} m_{1}+C_{B}\right)\|\nabla u(t)\|^{2}+\frac{m_{1}}{4 \epsilon_{1}}\left\|u^{\prime}(t)\right\|^{2} \\
& -\frac{\zeta_{2}}{2}(h \diamond \nabla u)(t)-\frac{1}{2} a_{0} h(t)\|\nabla u(t)\|^{2}, \tag{24}
\end{align*}
$$

where C_{B} is a positive constant relating Poincaré constant B and also, by $\left(\mathrm{A}_{2}\right)$, the energy $E_{1}(t)$ is a positive functional. Applying Poincarè inequality to (24),
we deduce

$$
\begin{align*}
E^{\prime}(t) \leq & \left(C_{p} \widetilde{C_{1}}+\epsilon_{1} m_{1}-\frac{1}{2} a_{0} h(t)\right)\|\nabla u(t)\|^{2} \tag{25}\\
& +\frac{m_{1}}{4 \epsilon_{1}}\left\|u^{\prime}(t)\right\|^{2}-\frac{\zeta_{2}}{2}(h \diamond \nabla u)(t),
\end{align*}
$$

where C_{p} is the Poincarè coefficient. Meanwhile, we note from $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ that
(26)

$$
\begin{aligned}
E_{1}(t) \geq & \frac{1}{2}\|u(t)\|^{2}+\frac{1}{2} \int_{\Omega} M\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x \\
& +\frac{1}{2}\left(1-\|a\|_{\infty} \int_{0}^{t} h(s) d s\right)\|\nabla u(t)\|^{2}+\frac{1}{2}(h \diamond u)(t)+\frac{1}{\gamma+2}\|u(t)\|_{\gamma+2}^{\gamma+2} \\
\geq & l\left[\frac{1}{2}\left\|u^{\prime}(t)\right\|^{2}+\frac{1}{2} \int_{\Omega} M\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x+\frac{1}{\gamma+2}\|u(t)\|_{\gamma+2}^{\gamma+2}\right] .
\end{aligned}
$$

So, we deduce the relation $0 \leq E(t) \leq l^{-1} E_{1}(t)$. Therefore, the uniform decay of $E(t)$ is a result of the decay of $E_{1}(t)$. For positive constants ϵ_{2} and ϵ_{3}, let us define the perturbed modified energy by

$$
\begin{equation*}
F(t)=E_{1}(t)+\epsilon_{2} \varphi(t)+\epsilon_{3} \psi(t) \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(t)=\left\langle u^{\prime}(t), u(t)\right\rangle \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(t)=-\int_{0}^{t} h(t-\tau)\left\langle a(x) u^{\prime}(t), u(t)-u(\tau)\right\rangle d \tau \tag{29}
\end{equation*}
$$

By using the Cauchy's inequality, Hölder inequality and Poincarè inequality, there exist positive constants α_{1}, α_{2} such that for each $t>0$

$$
\begin{equation*}
\alpha_{1} F(t) \leq E_{1}(t) \leq \alpha_{2} F(t) \tag{30}
\end{equation*}
$$

Proposition 3.1. (Energy equivalence)

$$
\alpha_{1} F(t) \leq E_{1}(t) \leq \alpha_{2} F(t) \quad \text { for all } t \geq 0
$$

where

$$
\alpha_{1}=\frac{1}{\max \left\{1, \epsilon_{4}+\epsilon_{5},\left(\epsilon_{4}+\epsilon_{5}\right) C_{p}\right\}}>0
$$

and

$$
\alpha_{2}=\frac{1}{\min \left\{1-\left(\epsilon_{4}+\epsilon_{5}\right), m_{0}-\epsilon_{4} C_{p}, 1-\epsilon_{5} C_{p}(1-l)\right\}}>0
$$

Proof. By the Cauchy inequality and Hölder inequality, we get

$$
\begin{align*}
F(t) \leq & E_{1}(t)+\frac{\epsilon_{4}}{2}\left\|u^{\prime}(t)\right\|^{2}+\frac{\epsilon_{4}}{2}\|u(t)\|^{2} \\
& +\frac{\epsilon_{5}}{2}\left\|\int_{0}^{t} h(t-\tau) a(x)(u(t)-u(\tau)) d \tau\right\|+\frac{\epsilon_{5}}{2}\left\|u^{\prime}(t)\right\| \tag{31}
\end{align*}
$$

where $\epsilon_{4}, \epsilon_{5}$ are positive constants.
By using the Poincarè inequality, we have

$$
\begin{aligned}
F(t) \leq & E_{1}(t)+\frac{\epsilon_{4}+\epsilon_{5}}{2}\left\|u^{\prime}(t)\right\|^{2}+\frac{\epsilon_{4}}{2}\|u(t)\|^{2} \\
& +\frac{\epsilon_{5}}{2}\|a\|_{\infty} \int_{0}^{\infty} h(s) d s \int_{0}^{t} h(t-\tau)\|\sqrt{a(x)}(u(t)-u(\tau))\|^{2} d \tau \\
\leq & E_{1}(t)+\frac{\epsilon_{4}+\epsilon_{5}}{2}\left\|u^{\prime}(t)\right\|^{2}+\frac{\epsilon_{4}}{2}\|u(t)\|^{2} \\
& +\frac{\epsilon_{5}}{2} C_{p}(1-l) \int_{0}^{\infty} h(s) d s \int_{0}^{t} h(t-\tau)\|\sqrt{a(x)}(u(t)-u(\tau))\|^{2} d \tau \\
\leq & E_{1}(t)+\frac{\epsilon_{4}+\epsilon_{5}}{2}\left\|u^{\prime}(t)\right\|^{2}+\frac{\epsilon_{4}}{2} C_{p}\|\nabla u(t)\|^{2} \\
& +\frac{\epsilon_{5}}{2} C_{p}(1-l)(h \diamond \nabla u)(t) \\
\leq & \max \left\{1, \epsilon_{4}+\epsilon_{5},\left(\epsilon_{4}+\epsilon_{5}\right) C_{p}\right\} E_{1}(t),
\end{aligned}
$$

where C_{p} is the Poincarè coefficient. Besides, choosing $\epsilon_{4}, \epsilon_{5}$ small enough, we have

$$
\begin{aligned}
F(t) \geq & E_{1}(t)-\frac{\epsilon_{4}+\epsilon_{5}}{2}\left\|u^{\prime}(t)\right\|^{2}-\frac{\epsilon_{4}}{2} C_{p}\|\nabla u(t)\|^{2} \\
& -\frac{\epsilon_{5}}{2} C_{p}(1-l)(h \diamond \nabla u)(t) \\
\geq & \frac{1-\left(\epsilon_{4}+\epsilon_{5}\right)}{2}\left\|u^{\prime}(t)\right\|^{2}+\frac{m_{0}-\epsilon_{4} C_{p}}{2}\|\nabla u(t)\|^{2} \\
& -\frac{1}{2}\|\sqrt{a(x)} \nabla u(t)\|^{2} \int_{0}^{t} h(s) d s+\frac{1}{\gamma+2}\|u(t)\|_{\gamma+2}^{\gamma+2} \\
& +\frac{1-\epsilon_{5} C_{p}(1-l)}{2}(h \diamond \nabla u)(t) \\
\geq & \min \left\{1-\left(\epsilon_{4}+\epsilon_{5}\right), m_{0}-\epsilon_{4} C_{p}, 1-\epsilon_{5} C_{p}(1-l)\right\} E_{1}(t) .
\end{aligned}
$$

In fact, using (1), we have

$$
\begin{align*}
\varphi^{\prime}(t)= & \left\langle u^{\prime \prime}(t), u(t)\right\rangle+\left\|u^{\prime}(t)\right\|^{2} \\
= & \left\|u^{\prime}(t)\right\|^{2}+\left\langle u(t), M\left(x, t,\|\nabla u(t)\|^{2}\right) \Delta u(x, t)\right. \\
& \left.-\int_{0}^{t} h(t-\tau) \operatorname{div}[a(x) \nabla u(\tau)] d \tau-|u(t)|^{\gamma} u(t)\right\rangle \tag{32}\\
= & \left\|u^{\prime}(t)\right\|^{2}-\int_{\Omega} M\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(t)|^{2} d x \\
& \left.+\int_{0}^{t} h(t-\tau)\langle a(x) \nabla u(\tau), \nabla u(t)\rangle\right] d \tau-|u(t)|^{\gamma} u(t) .
\end{align*}
$$

By Cauchy inequality and Young's inequality, we have

$$
\begin{align*}
& \left.\mid \int_{0}^{t} h(t-\tau)\langle a(x) \nabla u(\tau), \nabla u(t)\rangle\right] d \tau \mid \\
\leq & \frac{1}{2}\|\nabla u(t)\|^{2}+\frac{1}{2}\left\|\int_{0}^{t} h(t-\tau)(a(x)|\nabla u(\tau)-\nabla u(t)|+a(x)|\nabla u(t)|) d \tau\right\|^{2} \tag{33}\\
\leq & \frac{1}{2}\|\nabla u(t)\|^{2}+\left(\frac{1}{2}+\frac{1}{8 \epsilon_{6}}\right)\left\|\int_{0}^{t} h(t-\tau) a(x)|\nabla u(\tau)-\nabla u(t)| d \tau\right\|^{2} \\
& +\left(\frac{1}{2}+\frac{\epsilon_{6}}{2}\right)\left\|\int_{0}^{t} h(t-\tau) a(x)|\nabla u(t)| d \tau\right\|^{2},
\end{align*}
$$

where ϵ_{6} with respect to Young's inequality is a positive constant. Using the assumption (A_{2}) and (33), we get

$$
\begin{align*}
& \left.\mid \int_{0}^{t} h(t-\tau)\langle a(x) \nabla u(\tau), \nabla u(t)\rangle\right] d \tau \mid \\
\leq & \left(\frac{1}{2}+\frac{1}{8 \epsilon_{6}}\right)\|a\|_{\infty} \int_{0}^{t} h(s) d s \int_{0}^{t} h(t-\tau)\|\sqrt{a(x)}(\nabla u(\tau)-\nabla u(t))\|^{2} d \tau \tag{34}\\
& +\left(\frac{1}{2}+\frac{\epsilon_{6}}{2}\right)\|\nabla u(t)\|^{2}\left(\|a\|_{\infty} \int_{0}^{t} h(s) a(x) d s\right)^{2}+\frac{1}{2}\|\nabla u(t)\|^{2} \\
\leq & \frac{1}{2}\left(1+\left(1+\epsilon_{6}\right)(1-l)^{2}\right)\|\nabla u(t)\|^{2}+\frac{\left(4 \epsilon_{6}+1\right)(1-l)}{8 \epsilon_{6}}(h \diamond \nabla u)(t) .
\end{align*}
$$

By combining (32) and (34), we conclude

$$
\begin{align*}
\varphi^{\prime}(t) \leq & \left\|u^{\prime}(t)\right\|^{2}+\frac{1}{2}\left(1-2 m_{0}+\left(1+\epsilon_{6}\right)(1-l)^{2}\right)\|\nabla u(t)\|^{2} \\
& +\frac{\left(4 \epsilon_{6}+1\right)(1-l)}{8 \epsilon_{6}}(h \diamond \nabla u)(t)-\|u(t)\|_{\gamma+2}^{\gamma+2} . \tag{35}
\end{align*}
$$

Next, we estimate $\psi^{\prime}(t)$ as follows. In fact, using (1), we have

$$
\begin{align*}
\psi^{\prime}(t)= & -\int_{0}^{t} h^{\prime}(t-\tau)\left\langle a(x) u^{\prime}(t), u(t)-u(\tau)\right\rangle d \tau \tag{36}\\
& -\int_{0}^{t} h(t-\tau)\left\langle a(x) u^{\prime \prime}(t), u(t)-u(\tau)\right\rangle d \tau-\left\|\sqrt{a(x)} u^{\prime}(t)\right\|^{2} \int_{0}^{t} h(s) d s \\
= & -\int_{0}^{t} h^{\prime}(t-\tau)\left\langle a(x) u^{\prime}(t), u(t)-u(\tau)\right\rangle d \tau \\
& -\int_{0}^{t} h(t-\tau)\left\langle M\left(x, t,\|\nabla u(t)\|^{2}\right) a(x) \nabla u(t), \nabla u(t)-\nabla u(\tau)\right\rangle d \tau \\
& -\left\langle\int_{0}^{t} h(t-\tau) a(x) \nabla u(\tau) d \tau, \int_{0}^{t} h(t-\tau) a(x)(\nabla u(t)-\nabla u(\tau)) d \tau\right\rangle \\
& \left.+\left.\int_{0}^{t} h(t-\tau)\langle a(x)| u\right|^{\gamma} u, u(t)-u(\tau)\right\rangle d \tau \\
& -\left\|\sqrt{a(x)} u^{\prime}(t)\right\|^{2} \int_{0}^{t} h(s) d s .
\end{align*}
$$

Using Cauchy inequality, Poincarè inequality and $\left(\mathrm{A}_{1}\right)$, we have

$$
\begin{align*}
& \left|-\int_{0}^{t} h^{\prime}(t-\tau)\left\langle a(x) u^{\prime}(t), u(t)-u(\tau)\right\rangle d \tau\right| \\
\leq & \epsilon_{7}\|\nabla u(t)\|^{2}+\frac{\zeta_{1}}{4 \epsilon_{7}}\left\|\int_{0}^{t} h(t-\tau) a(x)|u(t)-u(\tau)| d \tau\right\|^{2} \tag{37}\\
\leq & \epsilon_{7}\|\nabla u(t)\|^{2}+\frac{\zeta_{1}}{4 \epsilon_{7}}(1-l) C_{p}^{2}(h \diamond \nabla u)(t),
\end{align*}
$$

where ϵ_{7} is a positive constant with respect to Cauchy inequality and C_{p} is the Poincarè coefficient. Similarly, using Cauchy inequality and $\left(\mathrm{B}_{2}\right)$, we get

$$
\begin{align*}
& \quad\left|-\int_{0}^{t} h(t-\tau)\left\langle M\left(x, t,\|\nabla u(t)\|^{2}\right) a(x) \nabla u(t), \nabla u(t)-\nabla u(\tau)\right\rangle d \tau\right| \tag{38}\\
& \leq \epsilon_{8} f^{2}\left(\|\nabla u(t)\|^{2}\right)\left\|u^{\prime}(t)\right\|^{2}+\frac{C_{0}(1-l)}{4 \epsilon_{8}}(h \diamond \nabla u)(t)
\end{align*}
$$

and
(39)

$$
\begin{aligned}
& \quad\left|-\left\langle\int_{0}^{t} h(t-\tau) a(x) \nabla u(\tau) d \tau, \int_{0}^{t} h(t-\tau) a(x)(\nabla u(t)-\nabla u(\tau)) d \tau\right\rangle\right| \\
& \leq \\
& \quad \epsilon_{9}\left\|\int_{0}^{t} h(t-\tau)(a(x)|\nabla u(t)-\nabla u(\tau)|+a(x)|\nabla u(t)|) d \tau\right\|^{2} \\
& \quad+\frac{1}{4 \epsilon_{9}}\left(\|a\|_{\infty} \int_{0}^{t} h(s) d s\right) \int_{0}^{t} h(t-\tau)\|\sqrt{a(x)}(\nabla u(t)-\nabla u(\tau))\|^{2} d \tau \\
& \leq \\
& \leq 2 \epsilon_{9}\left(\left\|\int_{0}^{t} h(t-\tau) a(x)|\nabla u(t)-\nabla u(\tau)| d \tau\right\|^{2}+\left\|\int_{0}^{t} h(t-\tau) a(x)|\nabla u(t)| d \tau\right\|^{2}\right) \\
& \quad+\frac{1-l}{4 \epsilon_{9}}(h \diamond \nabla u)(t) \\
& \leq \\
& \left(2 \epsilon_{9}+\frac{1}{4 \epsilon_{9}}\right)(1-l)(h \diamond \nabla u)(t)+2 \epsilon_{9}(1-l)^{2}\|\nabla u(t)\|^{2},
\end{aligned}
$$

where $\epsilon_{8}, \epsilon_{9}$ are positive constants with respect to Cauchy inequality. And also, using Cauchy inequality and Poincarè inequality, we have

$$
\begin{align*}
& \left.\left|\int_{0}^{t} h(t-\tau)\langle a(x)| u(t)\right|^{\gamma} u, u(t)-u(\tau)\right\rangle d \tau \mid \tag{40}\\
\leq & \epsilon_{10}\|u(t)\|_{2(\gamma+1)}^{2(\gamma+1)}+\frac{C_{p}(1-l)}{4 \epsilon_{10}}(h \diamond \nabla u)(t),
\end{align*}
$$

where ϵ_{10} is a positive constant with respect to Cauchy inequality and C_{p} is the Poincarè coefficient. Noting $H^{1}(\Omega) \hookrightarrow L^{2(\gamma+1)}(\Omega)$ and using Poincarè inequality, (23), (24) and (40), we get

$$
\begin{align*}
& \left.\left|\int_{0}^{t} h(t-\tau)\langle a(x)| u(t)\right|^{\gamma} u, u(t)-u(\tau)\right\rangle d \tau \mid \tag{41}\\
\leq & \epsilon_{10} C_{p}^{2(\gamma+1)}\left(\frac{2 E_{1}(0)}{l}\right)^{\gamma}\|\nabla u(t)\|^{2}+\frac{C_{p}(1-l)}{4 \epsilon_{10}}(h \diamond \nabla u)(t),
\end{align*}
$$

where C_{p} is the Poincarè coefficient. Combining (34)-(39) and (41) and also using $\left(\mathrm{A}_{2}\right)$, we deduce

$$
\begin{align*}
\psi^{\prime}(t) \leq & \left(\epsilon_{7}-a_{0}^{2} \int_{0}^{t} h(s) d s\right)\left\|u^{\prime}(t)\right\|^{2} \tag{42}\\
& +\left(\epsilon_{8} f^{2}\left(\|\nabla u(t)\|^{2}\right)+2 \epsilon_{9}(1-l)^{2}+\epsilon_{10} C_{p}^{2(\gamma+1)}\left(\frac{2 E_{1}(0)}{l}\right)^{\gamma}\right)\|\nabla u(t)\|^{2} \\
& +\left(\frac{\zeta_{1}}{4 \epsilon_{7}} C_{p}^{2}+\frac{C_{0}}{4 \epsilon_{8}}+2 \epsilon_{9}+\frac{1}{4 \epsilon_{9}}+\frac{C_{p}}{4 \epsilon_{10}}\right)(1-l)(h \diamond \nabla u)(t)
\end{align*}
$$

Combining (25), (27), (35) and (42), we deduce
(43)

$$
\begin{aligned}
& \quad F(t)=E_{1}(t)+\epsilon_{2} \varphi(t)+\epsilon_{3} \psi(t) \\
& \leq w_{1}\left\|u^{\prime}(t)\right\|^{2}+w_{2} \int_{\Omega} M\left(x, t,\|\nabla u(t)\|^{2}\right)|\nabla u(x, t)|^{2} d x+w_{3}(h \diamond \nabla u(t))-\|u(t)\|_{\gamma+2}^{\gamma+2},
\end{aligned}
$$

where

$$
\begin{aligned}
& w_{1}=\frac{m_{1}}{4 \epsilon_{1}}+\epsilon_{2}+\epsilon_{3}\left(\epsilon_{7}-a_{0}^{2} \int_{0}^{t} h(s) d s\right), \\
& w_{2}=f\left(\|\nabla u(t)\|^{2}\right) C_{0}\left[C_{p} \widetilde{C_{1}}+\epsilon_{1} m_{1}+C_{B}-\frac{1}{2} a_{0} h(t)\right] \\
& +\frac{\epsilon_{2} f\left(\|\nabla u(t)\|^{2}\right) C_{0}}{2}\left(1-2 m_{0}+\left(1+\epsilon_{6}\right)(1-l)^{2}\right) \\
& +\epsilon_{3} f\left(\|\nabla u(t)\|^{2}\right) C_{0}\left(\epsilon_{8} f^{2}\left(\|\nabla u(t)\|^{2}\right)+2 \epsilon_{9}(1-l)^{2}+\epsilon_{10} C_{p}^{2(\gamma+1)}\left(\frac{2 E_{1}(0)}{l}\right)^{\gamma}\right), \\
& w_{3}=-\frac{\zeta_{2}}{2}+\left[\frac{\epsilon_{2}\left(4 \epsilon_{6}+1\right)}{8 \epsilon_{6}}+\epsilon_{3}\left(\frac{\zeta_{1}}{4 \epsilon_{7}} C_{p}^{2}+\frac{C_{0}}{4 \epsilon_{8}}+2 \epsilon_{9}+\frac{1}{4 \epsilon_{9}}+\frac{C_{p}}{4 \epsilon_{10}}\right)\right](1-l),
\end{aligned}
$$

By using the smallness condition in $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{B}_{2}\right)$, for the fixed $\epsilon_{i}, i=1,4, \cdots, 10$, we choose $\epsilon_{j}>0, j=2,3$ such that $w_{k}<0, k=1,2,3$. According to (23) and (43), there exist a positive constant s such that

$$
\begin{equation*}
F(t) \leq-s E_{1}(t) \tag{44}
\end{equation*}
$$

for all t which is larger than the fixed time T_{0}. We conclude from (30) and (44) that

$$
F(t) \leq-s \alpha_{1} F(t)
$$

for all t which is larger than the fixed time T_{0}. That is, for all t which is larger than the fixed time T_{0},

$$
\begin{equation*}
F(t) \leq F\left(T_{0}\right) e^{s \alpha_{1} T_{0}} e^{-s \alpha_{1} t} \tag{45}
\end{equation*}
$$

Therefore, we deduce from (30), (26) and (45) that there are positive constants κ and ϑ such that

$$
E(t) \leq \kappa \exp \{-\vartheta t\} \quad \text { for all } t \geq 0 \text { and as } t \rightarrow+\infty .
$$

References

[1] F. Li, Z. Zhao and Y. Chen, Global existence and uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, J Nonlinear Analysis: Real World Applications, 12 (2011), 1759-1773.
[2] F. Li and Z. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Real World Applications, 74 (2011), 3468-3477.
[3] C. F. Carrier, On the vibration problem of elastic string, J. Appl. Math., 3 (1945), 151-165.
[4] R. W. Dickey, The initial value problem for a nonlinear semi-infinite string, Proc. Roy. Soc. Edinburgh Vol. 82 (1978), 19-26.
[5] S. Y. Lee and C. D. Mote, Vibration control of an axially moving string by boundary control, ASME J. Dyna. Syst., Meas., Control, 118 (1996), 66-74.
[6] Y. Li, D. Aron and C. D. Rahn, Adaptive vibration isolation for axially moving strings: Theory and experiment, Automatica, 38 (1996), 379-390.
[7] J. L. Lions, On some question on boundary value problem of mathematical physics, 1, in: G.M. de La Penha, L. A. Medeiros (Eds.), Contemporary Developments of Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam, 1978.
[8] M. Aassila and D. Kaya, On Local Solutions of a Mildly Degenerate Hyperbolic Equation, Journal of Mathematical Analysis and Applications, 238 (1999), 418-428.
[9] F. Pellicano and F. Vestroni, Complex dynamics of high-speed axially moving systems, Journal of Sound and Vibration, 258 (2002), 31-44.
[10] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1983.
[11] , Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions, Computers and Mathematics with Applications 62 (2011), 3004-3014.
[12] , Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3598-3617.
[13] J. Límaco, H. R. Clark, and L. A. Medeiros, Vibrations of elastic string with nonhomogeneous material, Journal of Mathematical Analysis and Applications 344 (2008), 806-820.
[14] M.L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary, Electronic J. Differential Equations 73 (2001), 1-11.
\qquad , Stabilization for the viscoelastic Kirchhoff type equation with nonlinear source, East Asian Math. J. 32 (2016), 117-128.
[16] \qquad , Asymptotic behavior for the viscoelastic Kirchhoff type equation with an internal time-varying delay term, East Asian Math. J. 32 (2016), 399-412.
[17] _, Exponential stability for the generalized Kirchhoff type equation in the presence of past and finite history, East Asian Math. J. 32 (2016), 659-675.
[18] Adams, R. Sobolev Spaces, Academic press, New York (1975).

Daewook Kim
Department of Mathematics and Education
Seowon University
Cheonguu 28674, Korea
E-mail address: kdw@seowon.ac.kr

[^0]: Received January 10, 2018; Accepted January 27, 2018.
 2010 Mathematics Subject Classification. Primary 35L70.
 Key words and phrases. viscoelastic Kirchhoff type equation, independent kernels, energy decay rate, energy functional, smallness condition.

