• Title/Summary/Keyword: Fuzzy-PD

Search Result 149, Processing Time 0.024 seconds

Motion Control of an AUV (Autonomous Underwater Vehicle) Using Fuzzy Gain Scheduling (퍼지 게인 스케쥴링을 이용한 자율 무인 잠수정의 자세 제어)

  • Park, Rang-Eun;Hwang, Eun-Ju;Lee, Hee-Jin;Park, Mignon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.592-600
    • /
    • 2010
  • The problem of motion control for AUV (Autonomous Underwater Vehicles) is addressed. The utilization of such robotic vehicles has gained an increasing importance in many marine activities. In this paper the objective is to describe how to design and apply FGS (Fuzzy Gain Scheduling) PD (Proportional Derivative) controller for an AUV (Autonomous Underwater Vehicle) to control the yaw and depth of the vehicle by keeping the path of the navigation to a desired point, and/or changing the path according to a set point.

Design of Fuzzy Logic Controller of HVDC using an Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 초고압 직류계통의 퍼지제어기 설계)

  • Choe, Jae-Gon;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.205-211
    • /
    • 2000
  • This paper presents an optimal design method for fuzzy logic controller (FLC) of HVDC using an Adaptive Evolutionary Algorithm(AEA). We have proposed the AEA which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary algorithms. The AEA is used for tuning fuzzy membership functions and scaling constants. Simulation results show that disturbances are well damped and the dynamic performances of FLC have better responses than those of PD controller when AC system load changes suddenly.

  • PDF

A rule base derivation method using neural networks for the fuzzy logic control of robot manipulators (로봇 매니퓰레이터의 퍼지논리 제어를 위한 신경회로망을 사용한 규칙 베이스 유도방법)

  • 이석원;경계현;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.441-446
    • /
    • 1992
  • We propose a control architecture for the fuzzy logic control of robot manipulators and a rule base derivation method for a fuzzy logic controller(FLC) using a neural network. The control architecture is composed of FLC and PD(positional Derivative) controller. And a neural network is designed in consideration of the FLC's structure. After the training is finished by BP(Back Propagation) and FEL(Feedback Error Learning) method, the rule base is derived from the neural network and is reduced through two stages - smoothing, logical reduction. Also, we show the performance of the control architecture through the simulation to verify the effectiveness of our proposed method.

  • PDF

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.

Consideration to the Stability of FLC using The Circle Criterion (Circle Criterion을 이용한 FLC의 안정도에 대한 고찰)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.525-529
    • /
    • 2009
  • Most of FLC received input data from error e and change-of-error e' with no relation with system complexity. Basic scheme follows typical PD and PI or PID Controller and that has been developed through fixed ME In this paper, We studied the relationship between MF and system response and system response through changing Fuzzy variable of consequence MF and propose the simple FLC using this relationship. The response of FLC is changed according to the width of Fuzzy variable of consequence MF. As changing the Fuzzy variable of consequence MF shows various nonlinear characteristic, we studied the relation between response and MF using analytical method. We designed the effective FLC using three-variable MF and nine rules and took simulation for verification. In this study, we propose the method to design system with FLC in stability point which is an impotent characteristic of designing system. The circle criterion which is adapted to analysis the nonlinear system is put to use for proposed method. Since SISO FLC has a time-invariant and odd characteristic we can use the critical point not disk which is generally used to determine the stability in the circle criterion, to determine the stability. Using this, we can get the maximum critical point plot of SISO FLC with changing the consequence fuzzy variables. The predetermined critical point plot of FLC can be used to decide the region of the system to be stable. This method is effectively used to design the SISO FLC.

Derivation of a Linear PID Control Law from a Fuzzy Control Theory (퍼지 제어기로부터 PID 제어기의 구현에 관한 연구)

  • 최병재;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.70-78
    • /
    • 1997
  • Proportional-integral-derivative(P1D) controllers have been still widely used in industrial processes due to their simplicity, effectiveness, robustness for a wide range of operating conditions, and the familiarity of control engineers. And a number of recent papers in fuzzy systems are showing that fuzzy systems are universal approximators. That is, fuzzy controllers are capable of approximating any real continuous function on a compact set of arbitrary accuracy. In this paper, we derive the linear PID control law from the fuzzy control algorithm where all fuzzy sets for representing plant state variables and a control variable use common triangular types. We first lead a linear PD control law from a fuzzy logic control with only two fuzzy sets for error and change-of-error. And then we derive the linear PID control law from a fuzzy controller. We here assumed that the intervals of error, change-of-error, and integral error could be partitioned into arbitrary numbers, respectively. As a result, a linear PID controller is only a sort of various fuzzy logic controls.

  • PDF

Fuzzy Patterns of Economic Valuating on the Architectural Aesthetic - Case Study of Applying the Fuzzy-Contingent Valuation Method to the Dongdaemoon Design Plaza - (건축미의 경제적 가치 퍼지패턴 분석)

  • Lee, Dong-Joo;Ko, Eun-Hyung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.3
    • /
    • pp.13-20
    • /
    • 2020
  • The purpose of this study is to analyze the fuzzy pattern that is reflected on the inside of the value evaluator in measuring the economic value of architectural aesthetic using the fuzzy-contingent valuation method. The main results of analyzing the relationship between architectural aesthetic and fuzzy patterns by typing 307 fuzzy patterns collected from visitors at Dongdaemun Design Plaza are as follows: First, low levels of architectural aesthetic can be a primary cause of extreme refusal of payment. However, it was confirmed that the extreme refusal of payment could partially involve mentality of free-ride on public goods or mentality that would not give value to past events that are not future. Second, if the architectural aesthetic score is 77.5, the most perfect form of fuzzy pattern is formed. It is confirmed that the fuzzy form, which is the standard in the relationship between architectural aesthetic and money value, is made at 77.5 points. This means that it is most efficient to have 77.5 points of architectural aesthetic to secure balanced data by membership in the study of architectural aesthetic value measurement through fuzzy pattern. Third, according to the architectural aesthetic score, respondents can be interpreted as follows: no monetary willingness arises before or after 52.4, starts to respond to the amount before and after 65.6, severe conflict over payments around 70.6~71.7, stronger willingness to pay around 77.6, want to pay for sure around 80.0.

Dialogical design of fuzzy controller using rough grasp of process property

  • Ishimaru, Naoyuki;Ishimoto, Tutomu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.265-271
    • /
    • 1992
  • It is the purpose of this paper to present a dialogical designing method for control system using a rough grasp of the unknown process property. We deal with a single-input single-output feedback control system with a fuzzy controller. The process property is roughly estimated by the step response, and the fuzzy controller is interactively modified according to the operator's requests. The modifying rules mainly derived from computer simulation are useful for almost every process, such as an unstable process and a non-minimum phase process. The fuzzy controller is tuned by taking notice of four characteristics of the step response: (1) rising time, (2) overshoot, (3) amplitude and (4) period of vibration. The tuning position of the controller is fourfold: (1) antecedent gain factor GE or GCE, (2) consequent gain factor GDU, (3) arrangement of the antecedent fuzzy labels and (4) arrangement of the control rules. The rules give an instance to the respective items of the controller in an effective order. The modified fuzzy PI controller realizes a good response of a stable process. However, because the GDU tuning becomes difficult for the unstable process, it is necessary to evaluate the stability of the process from the initial step response. The fuzzy PI controller is applied to the process whose initial step response converges with GDU tuning. The fuzzy PI controller with modified sampling time is applied to the process whose step response converges under the repeated application of the GDU tuning. The fuzzy PD controller is applied to the process whose step response never converges by the GDU tuning.

  • PDF

Design of a Fuzzy Logic Controller for a Rotary-type Inverted Pendulum System

  • Park, Byung-Jae;Ryu, Chun-ha;Choi, Bong-Yeol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.109-114
    • /
    • 2002
  • Various inverted pendulum systems have been frequently used as a model for the performance test of the proposed control system. We first identify a rotary-type inverted pendulum system by the Euler-Lagrange method and then design a FLC (Fuzzy Logic Controller) fur the plant. FLC`s are one of useful control schemes fur plants having difficulties in deriving mathematical models or having performance limitations with conventional linear control schemes. Many FLC`s imitate the concept of conventional PD (Proportional-Derivative) or PI (Proportional-Integral) controller. That is, the error e and the change-of-error are used as antecedent variables and the control input u the change of control input Au is used as its consequent variable for FLC`s. In this paper we design a simple-structured FLC for the rotary inverted pendulum system. We also perform some computer simulations to examine the tracking performance of the closed-loop system.

Analysis of PD Distribution Characteristics and Comparison of Classification Methods according to Electrical Tree Source in Power Cable (전력용 케이블 시편에서 전기트리 발생원에 따른 부분방전 분포 특성 및 발생원 분류기법 비교)

  • Park, Seong-Hee;Jeong, Hae-Eun;Lim, Kee-Joe;Kang, Seong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2007
  • One of the cause of insulation failure in power cable is well known by electrical treeing discharge. This is occurred for imposed continuous stress at cable. And this event is related to safety, reliability and maintenance. In this paper, throughout analysis of partial discharge(PD) distribution when occurring the electrical tree, is studied for the purpose of knowing of electrical treeing discharge characteristics according to defects. Own characteristic of tree will be differently processed in each defect and this reason is the first purpose of this paper. To acquire PD data, three defective tree models were made. And their own data is shown by the phase-resolved partial discharge method (PRPD). As a result of PRPD, tree discharge sources have their own characteristics. And if other defects (void, metal particle) exist internal power cable then their characteristics are shown very different. This result Is related to the time of breakdown and this is importance of cable diagnosis. And classification method of PD sources was studied in this paper. It needs select the most useful method to apply PD data classification one of the proposed method. To meet the requirement, we select methods of different type. That is, neural network(NN-BP), adaptive neuro-fuzzy inference system and PCA-LDA were applied to result. As a result of, ANFIS shows the highest rate which value is 98 %. Generally, PCA-LDA and ANFIS are better than BP. Finally, we performed classification of tree progress using ANFIS and that result is 92 %.