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ABSTRACT

Proportional-integral-derivative(PID) controllers have been still widely used in industrial processes due to their
simplicity, effectiveness, robustness for a wide range of operating conditions, and the familiarity of control engine-
ers. And a number of recent papers in fuzzy systems are showing that fuzzy systems are universal approximators.
That is, fuzzy controllers are capable of approximating any real continuous function on a compact set of arbitrary
accuracy.

In this paper, we derive the linear PID control law from the fuzzy control algorithm where all fuzzy sets for
representing plant state variables and a control variable use common triangular types. We first lead a linear PD
control law from a fuzzy logic control with only two fuzzy sets for error and change-of-error. And then we derive
the linear PID control law from a fuzzy controller. We here assumed that the intervals of error, change-of-error,
and integral error could be partitioned into arbitrary numbers, respectively. As a result, a linear PID controller is

only a sort of various fuzzy logic controls.
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I. Introduction

It is a fact that proportional-integral-derivative
(PID) controllers have been still widely used in indus-
trial processes even if control theory has been devel-
oped sigaificantly. This is due to their simplicity, ef-
fectiveness, robustness for a wide range of operating
conditions, and the familiarity of control engineers.
These controllers are also embedded in all sorts of
special purpose control systems, and have several im-
portant functions:they have the ability to eliminate
steady-state errors through the integral action, they
can predict some degree of the future through the de-
rivative action, and they can cope with the saturation
of an actuator. Also, various proportional-derivative
(PD) controllers provide high sensitivity and tend to
increase the stability of the overall feedback control
system. In addition, they can reduce overshoot. So,
they can be effectively used for first or second-order
linear systems[l]. While the PID controllers perform
poorly for the processes with high nonlinearity, large
time delay, and time varying properties.

Recently, there has been growing interest in using
fuzzy set theory for control systems. Since L. Zadeh
had intrcduced the fuzzy set theory in 19635, this the-
ory has teen applied to many areas such as automatic
control, biology and medicine, decision making, econ-
omic etc. It provides an effective means of capturing
approximate, inexact nature of the real world. Fuzzy
logic control has emerged as one of the most active
and fruitful areas for research in the application of
fuzzy set theory. Fuzzy logic control is particularly
the useful control method for the plants with the dif-
ficulty in derivation of a mathematical model or with
the limitation in performances using conventional lin-
ear control scheme. The majority of works in the field
of fuzzy control theory use only error (¢) and change-
of-error (e or &) as inputs of a controller. In this
case, fuzzy controllers are divided into two categories
:one is a PD-type fuzzy control which generates con-

trol input (%) from error and change-of-error, the
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other is a Pl(proportional-integral)-type fuzzy control
which generates incremental control input (Ax) from
error and change-of-error. There also is a PID-type
fuzzy control which generates control input from er-
ror, change-of-error, and integral error (oe or [ edt).
In [1] and [3], it is shown that for nonlinear systems
PD and PI-type fuzzy controllers are better than the
conventional PD and PI controllers, respectively.

A number of recent papers in fuzzy systems are
showing that fuzzy systems are universal approxim-
ators. That is, fuzzy controllers are capable of ap-
proximating any real continuous function on a com-
pact set of arbitrary accuracyl3]. In [3] and [4], they
showed that the output of special fuzzy controllers is
equivalent to that of a linear PI controller. In [5], a
linear PD and PID controllers are realized by a fuzzy
controller which the output fuzzy sets are singleton
types. In this paper we derive the linecar PID control
law from the fuzzy control algorithm where all fuzzy
sets for representing plant states and a control vari-
able use common triangular types.

In Section Il we give a short comments on the
fuzzy control theory, and we present the derivation of
a linear PID control law from fuzzy control theory in
Section . In this section we first discuss the realiz-
ation of a linear PD control law from a fuzzy control-
ler, and then in detail describe the derivation of a lin-
ear PID controller from a fuzzy controller. The final

Section contains a brief discussion and conclusions.
[I. Fuzzy Control Theory

The input of fuzzy controllers is mostly one among
the set of error and change-of-error, the set of error,
change-of-error, and integral error, and another set,
where the element of sets is ihe process state variables
representing the contents of the fuzzy rule-antecedent
(if-part of a rule). And these controllers use a control
input or an incremental control input as the variables
representing the contents of the rule-consequent (then-

part of a rule), namely, their outputs. Here, we briefly
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Fig. 1 Computational structure of the FLC.

describe the PD-type fuzzy control theory which gen-
erates a control input from error, change-of-error,
and integral error.

The computational structure of a fuzzy controller
consists of a number of computational steps as de-
picted in Fig. 1. There are five computational steps:

(D Normalization

@ Fuzzification

@ Reasoning

@ Defuzzification

(® Denormalization

Normalization is the step of input scaling. In other
words, the domains of the process state variables in
the rule-antecedent are mapped into the same uni-
verse of discourse after this step.

Fuzzification transforms the continuous input sig-
nal into linguistic variables such as ¢, Se, and oe,
where 2, 8¢, and ge are the linguistic values taken by
the process state variables e, de, and oe, respectively.
The meaning of linguistic values is illustrated by mem-
bership functions which are the central concept of
fuzzy set theory. The membership function of linguis-
tic value ¢ is denoted by uz(e), and it represents nu-
merically the degree to which an element or fuzzy
variable ¢ belongs to the fuzzy set €. Then the mean-
ing of € is given by ps(e): E—[0, 1], where E is the
universe of discourse.

Reasoning or inference is the step of rule firing.
The fuzzy engine carries out rule inference where hu-
man experience is injected through linguistic rules.
For the most part the min-max or the product-sum
method is used to infer fuzzy control rules. The result
of this step is given by the fuzzy set pz-(%).

Defuzzification converts the inferred control action

back to continuous control signal that interpolates
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between simultaneously fired rules. That is, this is the
step that obtains a crisp value # from a fuzzy set uz
(#). The center-of-gravity, the center-average, or the
height method is used for this.

Denormalization is the procedure of output scaling.
In other words, the domain of the control variable %
in the rule-consequent is mapped into another uni-

verse of discourse.

[I. Derivation of PID Control Law

Now we in detail describe the realization of a PID
controller from a fuzzy control algorithm in this sec-
tion. In order to derive a conventional linear PID
control law from a fuzzy control algorithm with non-
linearities it is necessary that the relationship between
input and output of a fuzzy controller has to be lin-
ear. Therefore the particular types for membership fun-
ctions, reasoning method, and defuzzification method
are required so that a fuzzy controller can produce a
linear output with respect to a given input. The mem-
bership functions are all triangular types and intersect
at the height of 0.5. The product-sum operation rule
will be used for reasoning of fuzzy rules, and the cen-
ter-average method for defuzzification of a inferenc-

ing result.

A Realization of a linear PD controller

For simplicity, we first give the realization of a PD
controller by a fuzzy logic control method. A linear
PD control law is given in the form of the linear com-
bination of error e and change-of-error de or e as

follows:

u=Kp-e+KD-5e (1)
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Let €5 and es; be the minimal and maximal values of
possible etror e, and let de; and des; be the minimal
and maximal values of possible change-of-error de,
namely,

ey < e< ey, Sep < de < ey, . )]
And we assume that the number of fuzzy sets for er-
ror ¢ is two and they are €, and &,, respectively, and
similarly, the number of fuzzy sets for change-of-error
Se is two and they are d¢, and de,, respectively. As
shown in Fig. 2 the types of membership functions
for error and change-of-error are all right-angled

triangles and the types for a control variable are isos-

celes triangles.

- U G U U
:De' e<2 o W
£ & o U
€5 € %em 5€s2 U U U U

Fig. 2 Fuzzy sets for error e, change-of-error de, and a con-
trol variable 2.

Fuzzy control rules which realizes a PD controller

are as follows:

R':if e is &; and de is de; then u is #
R*:if e is & and e is e, then u is
R:if e is & and de is e, then u is #;
R:if e is é and Se is de, then % is #a.

As the facts are ¢ and e, the conclusion #” is com-
puted as follows. We use the product-sum operation
rule for inferencing of fuzzy control rules, then the re-
sult which is inferred from the facts and fuzzy ruies is

given by

wa(20) = pi, () + p, () + pa,(e8) +pi (e, 3)

where
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wi 2) = pae) - g, (8e) - pi,(u)
pay () = pz,(e) - pg,(0e) - pi(w)
iy () = pz(e) - pg,(0€) - pia(x)
i) = pae) - pg,(0e) - pi(10)

@

and where membership functions uz,(e), uz,(€), usz,(de),
and pg,(6e) are computed as follows:

€€
pal@)=—"—— | pale)=1-pzle),
€p2 —Epy
5 5 (5)
- _%¢n—oe = (5e)=1—us
ubel(ée)— 5eb2"5eb1 , uﬂe:(ée) 1 #69.(63),

also where, + and - represent algebraic sum and pro-
duct operations, respectively. Let the center of a fuzzy
set % (k=1, 2, 3, 4) be u. Then the value of % be-
comes the center value of a fuzzy set #.” which is gen-
erated by the product operation rule, and from the

fuzzy control rules 2 can be expressed as follows [5]:

ey +Kp -
ey +Kp -
en +Kp -+
en +Kp -

U= Kp . 6ebl

u;=Kp - den

(9]

dep
6e1,2 .

u3=Kp‘
us=Kp -

These are the values of Eq. (1) at points (e, des), (es,
dex2), (en2, des), and (s, Sep).
For defuzzification we use the center-average method

as follows:

o kzr bz te) -

) o

From the definition of the center value ug, the fol-

lowing equation holds.

pa () =1, k=1,2,3,4. @®)

Substituting Eq. (8) into (7), the denominator of Eq.

(7) is expressed as follows:

Yooy pa(on) = pa (1) + pa, (uz) +pa, () + pa,(ua)

= pz(e) - ug,(de) +uzle) - ps,(5e)
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+pz(e) « pg(de) +uz(e) -+ ug,(de)
=w; tw: tws tws, 9)

where w; represents the degree of fitness of the facts e
and de to the antecedent part of the rule, and is

expressed as follows:

w1 =pz(e) « pg(de)
w2 = pz,(@) - pg,(6e) (10)
w3 = pz(e) - ug,(de)

wa = pzle) - ug,(de).

So, Eq. (7) can be rewritten as the following equation.

ye i U
i ok

(1

that is, the final consequence is obtained by the
weighted average of u; by the degree of we. Substitut-
ing Eq.’s (5) and (10) into Eq. (11), the denominator
and the numerator of Eq. (11) are reduced as the fol-

lowing Eq.”s (12) and (13), respectively.

s _ €py—¢€ . (321;2 —de
Lier ok en—en  Oen—oen
en—e - depn —de )
e —en depr — ben
— ey, —de
+1- €p—¢€ . b2
€52 —Eh1 by — dep
femme ) dewy — de )
€p2 —€Eb1 dery —den
=1. (12)
ZZ:] Wp * Uk
emn—e des, —de
=0 . £ - (Kp - €3y +Kp - dewr)
€s — €l Oep — den
en—e den, — oe
+ b2 {1 2 ) “(Kp-en +Kp-den)
€52 —E€p1 depr — Oep
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—~ -4
+1- er7l |. dey = d¢ -(Kp-ex +Kp- des1)
€p2 —Ep) depr — den
- -0
+|1— fn=e |. 1- der — oe )‘(Kp'ebz +Kp- dex)
€y — € Sepy —den

=Kp+e +Kp- de. (13)
Therefore, Eq. (11) is reduced by the same equation
to Eq. (1) as follows:

u=Kp-e+Kp- de

Consequently, we could derive the a PD control law
from a fuzzy control algorithm. Here, we used right-
angled triangles with intersection points at the height
0.5 as membership functions for fuzzy sets & and Je,
isosceles triangles as membership functions for a fuzzy
set #, the product-sum operation rule for approximate
reasoning, and the center-average method for defuz-
zification. In addition to these, we also assumed that
the number of fuzzy sets & and e is two, respectively.

In continuous section, we will derive the linear PID
control law from fuzzy control theory. Additionally,
we will lead more general case than that of a previous
section, namely, we will not restrict the number of
fuzzy sets representing plant state variables. In other
words, we will derive the case that the ranges of er-
ror, change-of-error, and integral error are partitioned
into several regions. Furthermore, we will use com-
mon triangular types instead of isosceles triangles as

membership functions for a fuzzy set «.

B. Derivation of a linear PID controller

Now we consider the realization of a conventional
linear PID control law from a fuzzy control algor-
ithm. As well known, the control law for a PID con-
troller is the form which is linearly combined by error
e, change-of-error Se, and integral error ge or | edt
as follows:

u=Kp- e +K1) - de +Kl 1 (14)
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And we assume that the numbers of fuzzy sets rep-
resenting process state variables are L, M, and N for
error, integral error, and change-of-error, respectively.
In other words, as shown in Fig. 3 the ranges of poss-
ible error e, integral error ge, and change-of-error de
are divided by L, M, and N fuzzy sets, respectively.
Also, we let the maxima! values of error ¢, integral er-
ror ¢e, and change-of-error de be ey, oesn, and depn,

respectively, that is,

e <e<e
(15)

0€p < 08 < 06hym
ey < oe < depn,

where o¢s represents the minimal value of the poss-

ible integral error ge.

8y & &um & &
- . >< e
Sony € Qeny € S
118, & & ®  Bpr Bwr B
- 4 = - w .
0 >< F
PR <% PRy By By B G
2] 8‘% &t &k &kov 56w &
P
, con SX e >
&, &, Ep.y 8,801y By B

(a) Fuzzy sets for error, integral error, and change-of-error.

1 U,, ‘7«12 Yoot
0 S
Usyy Uy, uLM(MY)L{MN

(b) Fuzzy sets for a control variable.

Fig. 3 Fuuzzy sets for error ¢, integral error ge, change-of-er-
ror de, and a control variable %.
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As shown in Fig. 3, membership functions for fuzzy
sets &, e, and 6¢ are common triangular types of
which neighboring fuzzy sets always intersect at the
height of 0.5, and we first assume that membership
functions for a fuzzy set # is isosceles triangular types.
Then fuzzy control rules which realizes a PID control
law have the following form:

R7*:if ¢ is & and oe is oe; and de is 5ex then u is %,

where

(16)

As the facts are e, ge, and Je, the conclusion i is
computed as follows. In the same way we use the
product-sum method for reasoning of fuzzy rules,
then the inference result is given by
PR CIEDIAND SIS AT (1)) an
where [, m, and »n are arbitrary positive integers with

the following ranges:

1<l<L-1

l<msM-—1 (18)
lsn<N-—1,

and

i (80 = pz(e) - pzloe) - pug,(8e) « pa, (). 19

And membership functions uz(e), pa..€), uz. (oe),
Uesnnl0€) - uz.(€), and pg,.,,(6e) are computed as

follows:
et —e
ﬂél(e) = Hr ﬂium(e) =1 _ﬂé,(e)
epi +1) —€st
oe —oe
ps )= —22IN 22 s (se)=1— sz (ce)

OChm+1) — 0€bm
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O€p(n +1)— 0€

52.(0e) =
Hs .( ) (seb(n+l)'_5ebn

s Hize.n(08)=1—pg (de).
20)

Let the center value of a fuzzy set #;;z" be #;;z. Then
the center value, #%;i, is also the peak value which is
generated by the product operation rule, and from the

fuzzy control rules #;;: can be expressed as follows [5]:
%;r=Kp - ey +K; - ges; +Kp - Sem 1)
This is the value of Eq. (14) at points (es;, oes;, dess).

For defuzzification we use the center-average method

as follows:

D AN BATERE (V) R TN

I+1 +1 +1
i=! Z7=m :=n I-tl;u'(uijk)

(22)

From the definition of #;;, the following equation
holds.

paattii) =1, (23)
where 7, 7, and k are the same to Eq. (16).

Substituting Eq. (23) into (22), the denominator of
Eq. (22) is expressed as follows:

S Tty paw i) =S5 T Tt wije.

(24)
where w;;: represents the degree of fitness of the facts
e, oe, and de to the antecedent part of the rule, and is
expressed as follows:

i = pze) - pzsloe) - pg,(de). (25)

Applying the above procedure to the numerator of

Eq. (22), the following equation is obtained.

I+ m+1 n+i e 4
_ i=1 Z,‘:m r=n Wijk ° Uik

i+ m+1 n+! ..
izl Z,‘=m k=n Oijk

(26)

that is, the final consequence is obtained by the
weighted average of u;;; by the degree of w;;z. Substi-
tuting Eq.’s (20) and (25) into (26), the denominator
of Eq. (26) is reduced as followings.

P2l Liom Ll wige
=pz(e)- uz (ce)-uz (6e) +usle)- uy_(s€)- us. ., (6e)
+1le) - pz o) - pg,(de)
+uze) - pz. . (0€) * ps,.,(0e)
+pzi.ule) - piz.loe) - pg,(de)
+uzol) - uz (o) - ps,,,(0€)
e nl@) * poen.(0€) - g, (de)
e n€) * pazn.(0€) * ps,..(0€)

exi+n—e Oem+n—0€ _ debtn +n—0€

ei+n"€s  OChm+1)—0Cm  OChin+1)— OCbn
Eni+1)—¢€ OCHm+1) —0€

+ = - (1 —pz.(5e))
exy +1)—esl O€him +1) — C€sm
exi+y—¢€ Sepin +1)— €

+—————— (A —pz(o0) - —————
et +1) —es 8€pn +1)— O€bn
eni+)—¢e

+—— - (1 —pgz.(0e)) - (1 —pgz, (5e))
eni +1) €l

0€p(n +1)— €
5eb(n +1) —'6ebn

GeHm+1)— 0€

+(1 —pzle)) -
G€him +1) — 0€pm

OCHm+1)—0€

+(1 - pzle)) - + (1 —psz,(0€))

OEhim +1) — 0€bm

debin +1)— 6€

Hl=p(@) - (1= pzloe) - 2=

(1 —pze)) + (1 = pzzloe)) - (1 —pg.(Se)

Similarly, by repeating the above procedure the nu-
merator of Eq. (26) is reduced as followings:

I+ +1 n+1 v w ..
i=f ZT:,,, p=n Wijk = Uijk
= Wimn * Utmn T+ Oton +1) * Yimin +1) + Otom +1y1 * Wilm +1)n

+ Dl + 1) +1) * Wit + D +1) TOU +1mn * U+ 1)

O+ +1) * U D +1) T O +Dn * WD+
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F ¢ +1m+00+1) * UL +1)0m + Dl +1)

=Kp-e +K1 - oée +KD - de.

That is, Eq. (26) is reduced by the same equation to
Eq. (14) of a linear PID control law as follows:

u=Kp- ¢ +K1 .- ge +KD . de.

Proposition. As shown in Fig. 4, when the fuzzy sets
for representing a control variable have common tri-
angular types instead of isosceles triangular types, we
can also derive the linear PID control law using the
following height defuzzification method instead of the

center-average method.

n+l

i+ m+i il e Bh
L=y Y om Lkaw Dijk * Uik 1)
- 1+t Zm+| a4l — .
isi Lujam Luk=n Wijk

where %,z is the peak value instead of the center
value of a fuzzy set %, for representing a control vari-

able # and is also expressed by following equation,

#ijr=Kp * epi +K; - op; +Kp + bem, (28)
and wij is given by
i =pzle) - pz(oe) -+ ug(0e) - pa,(wijn). (29)

Proof. From the similar procedure to above, the lin-
ear PID control law is easily derived so we here omit

the proof.

o/ XX\
7] U,

111 112

qM 1) qMN
Y

ULM(N~1) Uun

Fig. 4 Fuzzy sets for a control variable # of Proposition.

IV. Conclusions

In this paper, we minutely described the derivation
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of a linear PID control law from a fuzzy control the-
ory. We first lead a linear PD control law from a fuzzy
control algorithm with only two fuzzy sets for error
and change-of-error, respectively. And then we de-
rived a linear PID control law from a fuzzy control-
ler. In this case we assumed that the intervals of er-
ror, change-of-error, and integral error could be part-
itioned into arbitrary numbers, respectively. And we
used common triangular types with intersection points
at the height 0.5 as membership functions for fuzzy
sets of error, change-of-error, and integral error. We
also showed that a linear PID control law can be de-
rived for two cases:one is the case that membership
functions for a fuzzy set of a control variable have
isosceles triangular types and the other is the case
that membership functions have common triangular
types. In the first case we used the center-average
method for defuzzification and the height method for
the second case. Both cases used the product-sum
method for reasoning of fuzzy rules.

Consequently a linear PID controller is only a sort
of various fuzzy logic controllers. Furthermore, the
control performance of fuzzy controller is better than
that of a linear PID controller because the former can
treat with a nonlinearity and some degree of uncer-

tainty of a plant.
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