• Title/Summary/Keyword: Fuzzy systems modeling

Search Result 426, Processing Time 0.022 seconds

Neurofuzzy System for an Intial Ship Design

  • Kim, Soo-Young;Kim, Hyun-Cheol;Lee, Kyung-Sun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.585-590
    • /
    • 1998
  • The purpose of this paper is to develop a neurofuzzy modeling & inference system which can determine principle dimensions and hull factors in an initial ship design. Neurofuzzy modeling & inference for a hull form design (NeFHull) applies the given input-output data to the fuzzy theory. NeFHull also deals the fuzzificated values with neural networks. NeFHull redefines normalized input-output data as membership functions and executes the fuzzficated information with backporpagation-neural -networks. A hybrid learning algorithms utilized in the training of neural networks and examining the usefulness of suggested method through mathematical and mechanical examples.

  • PDF

Dynamic Simulation of AGC/LPC Synthetical System for Hot Strip Finishing Mill

  • Wang, Xiaoying;Wang, Jingcheng
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • A simulation of hot strip finishing mill automatic gauge control (AGC) system is built, which is divided into four modules such as rolling mill system, AGC module, looper system and strip model. The rolling mill system is built by mechanism modeling, the looper system and strip model are built by function modeling, and the AGC model is tried to use intelligent control of a multi-function AGC system. The target is attempted to use this simulation object to minimize finisher exit strip thickness deviation resulting from strip entry thickness disturbance and rolling force deviation. Simulation results show that the result of this AGC/LPC synthetical system module simulation is quite close to the actual result. The simulation system can also analyze most kinds of disturbance which affect the rolling process. It is proved that the system can represent practical situation of hot strip finishing mill process control, and be used as a basic platform of research and development for researcher and engineer.

Personalized Agent Modeling by Modified Spreading Neural Network

  • Cho, Young-Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2003
  • Generally, we want to be searched the newest as well as some appropriate personalized information from the internet resources. However, it is a complex and repeated procedure to search some appropriate information. Moreover, because the user's interests are changed as time goes, the real time modeling of a user's interests should be necessary. In this paper, I propose PREA system that can search and filter documents that users are interested from the World Wide Web. And then it constructs the user's interest model by a modified spreading neural network. Based on this network, PREA can easily produce some queries to search web documents, and it ranks them. The conventional spreading neural network does not have a visualization function, so that the users could not know how to be configured his or her interest model by the network. To solve this problem, PREA gives a visualization function being shown how to be made his interest user model to many users.

An Intelligent Search Modeling using Avatar Agent

  • Kim, Dae Su
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.288-291
    • /
    • 2004
  • This paper proposes an intelligent search modeling using avatar agent. This system consists of some modules such as agent interface, agent management, preprocessor, interface machine. Core-Symbol Database and Spell Checker are related to the preprocessor module and Interface Machine is connected with Best Aggregate Designer. Our avatar agent system does the indexing work that converts user's natural language type sentence to the proper words that is suitable for the specific branch information retrieval. Indexing is one of the preprocessing steps that make it possible to guarantee the specialty of user's input and increases the reliability of the result. It references a database that consists of synonym and specific branch dictionary. The resulting symbol after indexing is used for draft search by the internet search engine. The retrieval page position and link information are stored in the database. We experimented our system with the stock market keyword SAMSUNG_SDI, IBM, and SONY and compared the result with that of Altavista and Google search engine. It showed quite excellent results.

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

Adaptive Fuzzy Bilinear Synchronization Control Design for Uncertain $L\ddot{u}$ Chaos System (불확실한 $L\ddot{u}$ 카오스 시스템을 위한 적응 퍼지 Bilinear 동기화 제어 설계)

  • Baek, Jae-Ho;Lee, Hee-Jin;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.59-66
    • /
    • 2010
  • This paper is proposed an adaptive fuzzy bilinear synchronization design for uncertain $L\ddot{u}$ chaos system. It is assumed that the $L\ddot{u}$ chaos system has unknown parameters. First, The $L\ddot{u}$ chaos system can be reconstructed via TS fuzzy bilinear modeling. We design an adaptive fuzzy bilinear synchronization control scheme based on TS fuzzy bilinear $L\ddot{u}$ chaos system with uncertain parameters. Lyapunov theory is employed to guarantee the stability of error dynamic system between TS fuzzy bilinear $L\ddot{u}$ chaos system and the proposed slave system and to derive the adaptive laws for estimating unknown parameters. Simulation results is given to demonstrate the validity of our proposed synchronization scheme.

A Study on the Performance Improvement of Fuzzy Controller Using Genetic Algorithm and Evolution Programming (유전알고리즘과 진화프로그램을 이용한 퍼지제어기의 성능 향상에 관한 연구)

  • 이상부;임영도
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.58-64
    • /
    • 1997
  • FLC(Fuzzy Logic Controller) is stronger to the disturbance than a classical controller and its overshoot of the intialized value is excellent. In case an unknown process or the mathematical modeling of a complicated system is impossible, a fit control quantity can be acquired by the Fuzzy inference. But FLC can not converge correctly to the desirable value because the FLC's output value by the size of the quantization level of the Fuzzy variable always has a minor error. There are many ways to eliminate the minor error, but I will suggest GA-FLC and EP-FLC Hybrid controller which csombines FLC with GA(Genetic Algorithm) and EP(Evo1ution Programming). In this paper, the output characteristics of this Hybrid controller will be compared and analyzed with those of FLC, it will he showed that this Hybrid controller converge correctly to the desirable value without any error, and !he convergence speed performance of these two kinds of Hyhrid controller also will be compared.

  • PDF

Control of Flexible Joint Cart based Inverted Pendulum using LQR and Fuzzy Logic System (LQR-퍼지논리제어기에 의한 2중 차량 구조 역진자 시스템의 제어)

  • Xu, Yue;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.268-274
    • /
    • 2013
  • Any new method for controlling a nonlinear system has widely been reported. An inverted pendulum system has typically been used as a target system for demonstrating its usefulness. In this paper, we propose an algorithm to control a flexible joint cart based inverted pendulum system. Two carts are connected with a spring and one is a driving cart and the other is no driving cart with a pole. We here present a system modeling and a good fuzzy logic based control algorithm. We also introduce LQR (Linar Quadratic Regulator) technique for reducing the number of control variables. By using this technique, the number of input variables for a fuzzy logic controller is become only two not six. So the computational complexity is largely reduced. Moreover, a two-input fuzzy logic controller has a control rule table with a skew-symmetric property. And it will lead the design of a single-input fuzzy logic controller. In order to demonstrate the usefulness of the proposed method and prove the superiority of the proposed method, some computer simulations are presented.

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space (개별 입력 공간에 의한 퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5164-5171
    • /
    • 2011
  • In fuzzy modeling for nonlinear process, typically using the given data, the fuzzy rules are formed by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is identified by selection of the input variables, the number of space division and membership functions and the consequent part of the fuzzy rule is identified by polynomial functions in the form of simplified and linear inference. In general, formation of fuzzy rules for nonlinear processes using the given data have the problem that the number of fuzzy rules exponentially increases. To solve this problem complex nonlinear process can be modeled by separately forming the fuzzy rules by means of fuzzy division of each input space. Therefore, this paper utilizes individual input space to generate fuzzy rules. The premise parameters of the fuzzy rules are identified by Min-Max method using the minimum and maximum values of input data set and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. And lastly, using the data which is widely used in nonlinear process we evaluate the performance and the system characteristics.