• Title/Summary/Keyword: Fuzzy supervised method

Search Result 41, Processing Time 0.027 seconds

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm (퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Kim, Kwang-Baek;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1380-1386
    • /
    • 2007
  • This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is blacker white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm. Experiments using real images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Translation, rotation and scale invariant pattern recognition using spectral analysis and a hybrid genetic-neural-fuzzy networks (스펙트럴분석 및 복합 유전자-뉴로-퍼지망을 이용한 이동, 회전 및 크기 변형에 무관한 패턴인식)

  • 이상경;장동식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.587-599
    • /
    • 1995
  • This paper proposes a method for pattern recognition using spectral analysis and a hybrid genetic-neural-fuzzy networks. The feature vectors using spectral analysis on contour sequences of 2-D images are extracted, and the vectors are not effected by translation, rotation and scale variance. A combined model using the advantages of conventional method is proposed, those are supervised learning BP, global searching genetic algorithm, and unsupervised learning fuzzy c-method. The proposed method is applied to 10 aircraft recognition to confirm the performance of the method. The experimental results show that the proposed method is better accuracy than conventional method using BP or fuzzy c-method, and learning speed is enhanced.

  • PDF

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average (퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계)

  • Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

Malicious Codes Re-grouping Methods using Fuzzy Clustering based on Native API Frequency (Native API 빈도 기반의 퍼지 군집화를 이용한 악성코드 재그룹화 기법연구)

  • Kwon, O-Chul;Bae, Seong-Jae;Cho, Jae-Ik;Moon, Jung-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.115-127
    • /
    • 2008
  • The Native API is a system call which can only be accessed with the authentication of the administrator. It can be used to detect a variety of malicious codes which can only be executed with the administrator's authority. Therefore, much research is being done on detection methods using the characteristics of the Native API. Most of these researches are being done by using supervised learning methods of machine learning. However, the classification standards of Anti-Virus companies do not reflect the characteristics of the Native API. As a result the population data used in the supervised learning methods are not accurate. Therefore, more research is needed on the topic of classification standards using the Native API for detection. This paper proposes a method for re-grouping malicious codes using fuzzy clustering methods with the Native API standard. The accuracy of the proposed re-grouping method uses machine learning to compare detection rates with previous classifying methods for evaluation.

Target Detection and Navigation System for a mobile Robot

  • Kim, Il-Wan;Kwon, Ho-Sang;Kim, Young-Joong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2337-2341
    • /
    • 2005
  • This paper presents the target detection method using Support Vector Machines(SVMs) and the navigation system using behavior-based fuzzy controller. SVM is a machine-learning method based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate detection of target objects as a supervised-learning problem and apply SVM to detect at each location in the image whether a target object is present or not. The behavior-based fuzzy controller is implemented as an individual priority behavior: the highest level behavior is target-seeking, the middle level behavior is obstacle-avoidance, the lowest level is an emergency behavior. We have implemented and tested the proposed method in our mobile robot "Pioneer2-AT". Comparing with a neural-network based detection method, a SVM illustrate the excellence of the proposed method.

  • PDF

The Azimuth and Velocity Control of a Mobile Robot with Two Drive Wheels by Neural-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동형 로보트의 자세 및 속도 제어)

  • Cho, Y.G.;Bae, J.I.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.74-82
    • /
    • 1998
  • This paper presents a new approach to the design of speed and azimuth control of a mobile robot with two drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the neural-fuzzy network and back propagation algorithm to train the neural-fuzzy network controller in the framework of the specialized learning architecture. It is proposed to a learned controller with two neural-fuzzy networks based on an independent reasoning and a connection net with fixed weights to simplify the neural-fuzzy network. The performance of the proposed controller can be seen by the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Visual servo control of robots using fuzzy-neural-network (퍼지신경망을 이용한 로보트의 비쥬얼서보제어)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF

The Azimuth and Velocity Control of a Movile Robot with Two Drive Wheel by Neutral-Fuzzy Control Method (뉴럴-퍼지제어기법에 의한 두 구동휠을 갖는 이동 로봇의 자세 및 속도 제어)

  • 한성현
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-95
    • /
    • 1997
  • This paper presents a new approach to the design speed and azimuth control of a mobile robot with drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frmework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simple the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF