• Title/Summary/Keyword: Fuzzy model

Search Result 2,834, Processing Time 0.039 seconds

Optimal Intelligent Digital Redesign for a Class of Fuzzy-Model-Based Controllers

  • Chang-wook;Joo, Young-hoon;Park, Jin-bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.113-118
    • /
    • 2001
  • In this paper, we develop an optimal intelligent digital redesign method for a class of fuzzy-model-based controllers, effective for stabilization of continuous-time complex nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to extend the results of the classical digital redesign technique to complex nonlinear systems. Unlike the conventional intelligent digital redesign technique reported in the literature, the proposed method utilized the recently developed LMI optimization technique to obtain a digitally redesigned fuzzy-model-based controller. Precisely speaking, the intelligent digital redesign problem is converted to an equivalent optimization problem, and the LMI optimization method is used to find the digitally redesigned fuzzy-model-based controller. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

On-line Parameter Estimator Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.481-486
    • /
    • 2002
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-5) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control. Based on the derived design method, the parameter estimation for controllable canonical T-S fuzzy model is also Presented.

The optimal identification of nonlinear systems by means of Multi-Fuzzy Inference model (다중 퍼지 추론 모델에 의한 비선형 시스템의 최적 동정)

  • Jeong, Hoe-Yeol;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2669-2671
    • /
    • 2001
  • In this paper, we propose design a Multi-Fuzzy Inference model structure. In order to determine structure of the proposed Multi-Fuzzy Inference model, HCM clustering method is used. The parameters of membership function of the Multi-Fuzzy are identified by genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. We use simplified inference and linear inference as inference method of the proposed Multi-Fuzzy model and the standard least square method for estimating consequence parameters of the Multi-Fuzzy. Finally, we use some of numerical data to evaluate the proposed Multi-Fuzzy model and discuss about the usefulness.

  • PDF

Design and Implemention of Decision Model for Registration Fee Using the Fuzzy Reasoning (퍼지추론에 의한 등록금 결정 모델의 설계 및 구현)

  • Chung, Hong;Pi, Su-Young;Chung, Hwan-Mook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.97-101
    • /
    • 1997
  • In recent years, there have been a number of applications of fuzzy logic in fuzzy reasoning system. The main objective of these applications is to approximate a decision making using the fuzzy reasoning system. This paper designs a fuzzy reasoning model for the decision making of registration fee at a private school, implements it applying for linguistic variables and fuzzy rules, and evaluates the practical availability of the model. The system accepts fuzzy rules, the type of membership functions, the domain of fuzzy sets and hedge, and fuzzifies the linguistic variables to generates fuzzy sets. The fuzzy sets generated are combined to constructs a solution fuzzy set. Finally, the system defuzzifies the solution fuzzy set to calculate a scalar value which is used for decision making.

  • PDF

OPTIMIZATION OF STOCK MANAGEMENT SYSTEM WITH DEFICIENCIES THROUGH FUZZY RATIONALE WITH SIGNED DISTANCE METHOD IN SEABORN PROGRAMING TOOL

  • K. KALAIARASI;N. SINDHUJA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.379-390
    • /
    • 2024
  • This study proposes a fuzzy inventory model for managing large-scale production, incorporating cost considerations. The model accounts for two types of expenditure scenarios-parametric and exponential. Uncertainty surrounds holding costs, setup costs, and demand rates. The approach considers a supply chain system with a complex manufacturing process, factoring in transportation costs based on the quantity of goods and distance between the supplier and retailer. The initial crisp model is then transformed into a fuzzy simulation, incorporating specific fuzzy variables affecting inventory costs. The proposed method significantly reduces overall inventory costs for the entire supply chain. Retailer demand is linked to inventory levels, and vendor/distributor storage deteriorates over time. The fuzzy condition assumes hexagonal variables for all associated factors. The study employs the signed distance method for defuzzification to determine the optimal order quantity with hexagonal fuzzy numbers. Mathematical examples are provided to illustrate the practicality of the proposed approach.

LEAST ABSOLUTE DEVIATION ESTIMATOR IN FUZZY REGRESSION

  • KIM KYUNG JOONG;KIM DONG HO;CHOI SEUNG HOE
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.649-656
    • /
    • 2005
  • In this paper we consider a fuzzy least absolute deviation method in order to construct fuzzy linear regression model with fuzzy input and fuzzy output. We also consider two numerical examples to evaluate an effectiveness of the fuzzy least absolute deviation method and the fuzzy least squares method.

Design of Sliding Mode Fuzzy-Model-Based Controller Using Genetic Algorithms

  • Chang, Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.615-620
    • /
    • 2001
  • This paper addresses the design of sliding model fuzzy-model-based controller using genetic algorithms. In general, the construction of fuzzy logic controllers has difficulties for the lack of systematic design procedure. To release this difficulties, the sliding model fuzzy-model-based controllers was presented by authors. In this proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Although, the stability and the performance is guaranteed by the proposed method, some design parameters have to be chosen by the designer manually. This problem can be solved by using genetic algorithms. The proposed method tunes the parameters of the controller, by which the reasonable accuracy and the control effort is achieved. The validity and the efficiency of the proposed method are verified through simulations.

  • PDF

A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model (MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계)

  • Cho, Young-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.

Image Segmentation of Fuzzy Deep Learning using Fuzzy Logic (퍼지 논리를 이용한 퍼지 딥러닝 영상 분할)

  • Jongjin Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, we propose a fuzzy U-Net, a fuzzy deep learning model that applies fuzzy logic to improve performance in image segmentation using deep learning. Fuzzy modules using fuzzy logic were combined with U-Net, a deep learning model that showed excellent performance in image segmentation, and various types of fuzzy modules were simulated. The fuzzy module of the proposed deep learning model learns intrinsic and complex rules between feature maps of images and corresponding segmentation results. To this end, the superiority of the proposed method was demonstrated by applying it to dental CBCT data. As a result of the simulation, it can be seen that the performance of the ADD-RELU fuzzy module structure of the model using the addition skip connection in the proposed fuzzy U-Net is 0.7928 for the test dataset and the best.

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF