• Title/Summary/Keyword: Fuzzy logic controller design

Search Result 450, Processing Time 0.026 seconds

A Design Method for a Fuzzy Logic Controller of TCSC Using Genetic Algorithm for Damping Power System Oscillation (저주파 진동 감쇠를 위한 TCSC제어에 유전알고리즘을 이용한 퍼지제어기 설계)

  • Lim, S.U.;Kim, T.Y.;Song, M.G.;Hwang, G.H.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.838-840
    • /
    • 1997
  • This presents a design method for fuzzy logic controllers of TCSC using genetic algorithm. Fuzzy logic controllers are applied to damp the dynamic disturbances sum as sudden changes of AC system loads. The dynamic performances of fuzzy logic controllers are compared with those of PI controllers. The simulation results show that dynamic performances of fuzzy controllers have better response than those of PI controllers when the AC system load changes.

  • PDF

Design of Fuzzy Scaling Gain Controller using Genetic Algorithm (유전자 알고리즘을 이용한 퍼지 스케일링 게인 제어기의 설계)

  • Shin, Hyun-Seok; Kho, Jae-Won;Kwon, Cheol;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2268-2271
    • /
    • 1998
  • This paper proposes a method which can resolve the problem of existing fuzzy Pl controller using optimal scaling gains obtained by genetic algorithm. The new method adapt a fuzzy logic controller as a high level controller to perform scaling gain algorithm between two pre-determined sets.

  • PDF

Robust Indirect Adaptive Fuzzy Controller for Balancing and Position Control of Inverted Pendulum System

  • Kim Yong-Tae;Kim Dong-Yon;Yoo Jae-Ha
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.155-160
    • /
    • 2006
  • In the paper a robust indirect adaptive fuzzy controller is proposed for balancing and position control of the inverted pendulum system. Because balancing control rules of the pendulum and position control rules of the cart can be opposite, it is difficult to design an adaptive fuzzy controller that satisfy both objectives. To stabilize the pendulum at a specified position, the proposed fuzzy controller consists of a robust indirect adaptive fuzzy controller for balancing and a supervisory fuzzy controller which emulates heuristic control strategy and arbitrate two control objectives. It is proved that the signals in the overall system are bounded. Simulation results are given to verify the proposed adaptive fuzzy control method.

Design of Fuzzy Logic Controller of HVDC using an Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 초고압 직류계통의 퍼지제어기 설계)

  • Choe, Jae-Gon;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.205-211
    • /
    • 2000
  • This paper presents an optimal design method for fuzzy logic controller (FLC) of HVDC using an Adaptive Evolutionary Algorithm(AEA). We have proposed the AEA which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary algorithms. The AEA is used for tuning fuzzy membership functions and scaling constants. Simulation results show that disturbances are well damped and the dynamic performances of FLC have better responses than those of PD controller when AC system load changes suddenly.

  • PDF

The Fuzzy Model-Based-Controller for the Control of SISO Nonlinear System (SISO 비선형 시스템의 제어를 위한 퍼지 모델 기반 제어기)

  • Chang, Wook;Kwon, Ok-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.528-530
    • /
    • 1998
  • This paper addresses analysis and design of a fuzzy model-based-controller for the control of uncertain SISO nonlinear systems. In the design procedure, we represent the nonlinear system by using a Takagi-Sugeno fuzzy model and construct a global fuzzy logic controller via parallel distributed compensation and sliding mode control. Unlike other parallel distributed controllers. this globally stable fuzzy controller is designed without finding a common positive definite matrix for a set of Lyapunov equations, and has good tracking performance. Furthermore, stability analysis is conducted not for the fuzzy model but for the real underlying nonlinear system. A simulation is included for the control of the Duffing forced-oscillation system, to show the effectiveness and feasibility of the proposed fuzzy control method.

  • PDF

A Design of Fuzzy-Neural Network Controller of Wheeled-Mobile Robot for Path-Tracking (구륜 이동 로봇의 경로 추적을 위한 퍼지-신경망 제어기 설계)

  • Park Chongkug;Kim Sangwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • A controller of wheeled mobile robot(WMR) based on Lyapunov theory is designed and a Fuzzy-Neural Network algorithm is applied to this system to adjust controller gain. In conventional controller of WMR that adopts fixed controller gain, controller can not pursuit trajectory perfectly when initial condition of system is changed. Moreover, acquisition of optimal value of controller gain due to variation of initial condition is not easy because it can be get through lots of try and error process. To solve such problem, a Fuzzy-Neural Network algorithm is proposed. The Fuzzy logic adjusts gains to act up to position error and position error rate. And, the Neural Network algorithm optimizes gains according to initial position and initial direction. Computer simulation shows that the proposed Fuzzy-Neural Network controller is effective.

Design of the Wavelet-Based Fuzzy PI/PO Controller Using DNA Coding Method (웨이블릿 기반 DNA 코딩기법을 이용한 광디스크 드라이브용 퍼지 PI/PD 제어기 설계)

  • Yu, Jong-Hwa;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.370-372
    • /
    • 2004
  • This paper addresses the wavelet-based fuzzy PI/PD controller design using DNA coding method. A structure of fuzzy controller model is adopted as the wavelet transform of which the coefficients are identified. The proposed method overcomes some mathematical limits of conventional methods by using the fuzzy logic that is optimized by DNA coding method. The feasibility of the proposed fuzzy controller design scheme is verified by applying to the servo control of the optical disk drive.

  • PDF

PDA/FLC Depth control system design for underwater vehicles (수중운동체를 위한 PDA/FLC 심도 제어시스템 설계)

  • Kim, J.S.;Park, J.L.;Kim, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.25-32
    • /
    • 1994
  • A nonlinear control algorithm for the depth control of underwater vehicles is presented. In order to consider the deadzone effect of the flow control valve, a nonlinear fuzzy logic controller (FLC) is synthesized and combined with a linear proportional-derivative-acceleration (PDA) controller, which is called the PDA/FLC controller. And to show the effectiveness of the PDA/FLC control system, it is compared with the linear PDA control system through computer simulation. It is found that the PDA/FLC control system is suitable one to maintain the desirable depth of underwater vehicles with deadzone.

  • PDF

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.