• Title/Summary/Keyword: Fuzzy control

Search Result 4,184, Processing Time 0.034 seconds

Fuzzy Skyhook Control of A Semi-active Suspension System

  • Cho Jeong-Mok;Jung Tae-Geun;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2006
  • In the recent years, the development of computer-controlled suspension dampers and actuators has improved the trade-off between the vehicle handling and ride comfort, and has led to the development of various damper control policies. The skyhook control is an effective control strategy for suppressing vehicle vibration. In this study, a fuzzy skyhook control is proposed and tuned by a genetic algorithm to improve ride comfort. The proposed fuzzy skyhook control is applied to a quarter-car model in order to compare its performance with continuous skyhook suspensions. To obtain optimized fuzzy skyhook control, scale factors and in-out membership functions are tuned by a genetic algorithm. The simulation results show that the fuzzy skyhook control offers more effective suspension performance over the continuous skyhook control.

Speed control of induction motor for electric vehicles using PLL and fuzzy logic (PLL과 fuzzy논리를 이용한 전기자동차 구도용 유도전동기의 속도제어)

  • 양형렬;위석오;임영철;박종건
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.640-643
    • /
    • 1997
  • This paper describes speed controller of a induction motor for electric vehicles using PLL and Fuzzy logic. The proposed system is combined precise speed control of PLL and robust, fast speed control of Fuzzy logic. The motor speed is adaptively incremented or decremented toward the PLL locking range by the Fuzzy logic using information of sampled speed errors and then is maintained accurately by PLL. The results of experiment show excellence of proposed system and that the proposed system is appropriates to control the speed of induction motor for electric vehicles.

  • PDF

Application of Fuzzy Logic to Sliding Mode Control for Robot Manipulators

  • Park, Jae-Sam
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.14-19
    • /
    • 1997
  • In this paper, a new fuzzy sliding mode control algorithm is presented for trajectory control of robot manipulators. A fuzzy logic is applied to a sliding mode control algorithm to have the sliding mode gain adjusted continuously through fuzzy logic rules. With this scheme, te stability and the robustness of the proposed fuzzy logic control algorithm are proved and ensured by the sliding mode control law. The fuzzy logic controller requires only a few tuning parameters to adjust. Computer simulation results are given to show that the proposed algorithm can handle uncertain systems with large parameter uncertainties and external disturbances.

  • PDF

A Real-time High-speed Fuzzy Control System Using Integer Fuzzy Control Method (정수형 퍼지제어기법을 적용한 실시간 고속 퍼지제어시스템)

  • 손기성;김종혁;성은무;이상구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.299-302
    • /
    • 2003
  • In fuzzy control systems having large volumes of fuzzy data. one of the important problems is the improvement of execution speed in the fuzzy inference and defuzzification stages. In this paper, to improve the speedup of fuzzy controllers, we use an integer line mapping algorithm to convert [0, 1] real values in the fuzzy membership functions to integer pixels. U sing this, we propose a real-time high-speed fuzzy control system and implement a fast fuzzy processor and control system using FPGAs.

  • PDF

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Scale Factor Tuning of the Fuzzy Controller Using Continuous Fuzzy Input Variables (연속형 퍼지 입력변수를 사용하는 퍼지 제어기의 환산계수 동조)

  • Lim, Young-Cheol;Park, Jong-Gun;Wi, Seog-Oh;Jung, Hyun-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1359-1361
    • /
    • 1996
  • This paper describes a design of real time fuzzy controller using Minimum fuzzy control Rule Selection Method(MRSM). The control algorithm of dynamic systems needs less computation time and memory. To reduce the computation time of fuzzy logic controller, minimum number of rules are to be selected for the fuzzy input variable. The universe of discourse is divided by the number of linguistic labels to allocate the assigned membership function to the fuzzy input variables. In this case, since fuzzy input variables are continuous, scale factor SU is tuned independently. According to increment of SU control surface is improved to adapt the change of system parameter. At this, crisp control surface is increased. With the increament of crisp control surface, fuzzy control surface is reduced. When error state deviates from desirable error state, crisp control surface is more useful than fuzzy control surface for obtaining fast rising time.

  • PDF

Fuzzy-Sliding Mode Control of a Polishing Robot Based on Genetic Algorithm

  • Go, Seok-Jo;Lee, Min-Cheol;Park, Min-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.580-591
    • /
    • 2001
  • This paper proposes a fuzzy-sliding mode control which is designed by a self tuning fuzzy inference method based on a genetic algorithm. Using the method, the number of inference rules and the shape of the membership functions of the proposed fuzzy-sliding mode control are optimized without the aid of an expert in robotics. The fuzzy outputs of the consequent part are updated by the gradient descent method. It is further guaranteed that the selected solution becomes the global optimal solution by optimizing Akaikes information criterion expressing the quality of the inference rules. In order to evaluate the learning performance of the proposed fuzzy-sliding mode control based on a genetic algorithm, a trajectory tracking simulation of the polishing robot is carried out. Simulation results show that the optimal fuzzy inference rules are automatically selected by the genetic algorithm and the trajectory control result is similar to the result of the fuzzy-sliding mode control which is selected through trial error by an expert. Therefore, a designer who does not have expert knowledge of robot systems can design the fuzzy-sliding mode controller using the proposed self tuning fuzzy inference method based on the genetic algorithm.

  • PDF

Effects of multiple MR dampers controlled by fuzzy-based strategies on structural vibration reduction

  • Wilson, Claudia Mara Dias
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.349-363
    • /
    • 2012
  • Fuzzy logic based control has recently been proposed for regulating the properties of magnetorheological (MR) dampers in an effort to reduce vibrations of structures subjected to seismic excitations. So far, most studies showing the effectiveness of these algorithms have focused on the use of a single MR damper. Because multiple dampers would be needed in practical applications, this study aims to evaluate the effects of multiple individually tuned fuzzy-controlled MR dampers in reducing responses of a multi-degree-of-freedom structure subjected to seismic motions. Two different fuzzy-control algorithms are considered, a traditional controller where all parameters are kept constant, and a gain-scheduling control strategy. Different damper placement configurations are also considered, as are different numbers of MR dampers. To determine the robustness of the fuzzy controllers developed to changes in ground excitation, the structure selected is subjected to different earthquake records. Responses analyzed include peak and root mean square displacements, accelerations, and interstory drifts. Results obtained with the fuzzy-based control schemes are compared to passive control strategies.

A study on Fuzzy control for Inverter Welding Machine (인버터 용접기의 퍼지제어에 관한 연구)

  • 정재윤;조성갑
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.103-110
    • /
    • 1995
  • Fuzzy theory is recently finding wide popularity in various applications that include management, economics, medicine and process control system. This paper describes application of fuzzy logic in a current control system that use a inverter welding machine. The Fuzzy control is then extended to the current loop control, replacing the conventional proportional-integral(PI) control methods. The fuzzy control algorithms have been developed in detail and verified by experiments of a inverter welding system. The experimentation study indicates the superiority of fuzzy control over the I control methods. Fuzzy control seems to have a lot of promise in the applications of welding process control system.

  • PDF

A Study on Development of SCARA robot Using Fuzzy-Sliding mode control (퍼지-슬라이딩 모드를 이용한 스카라 로보트의 제어에 관한 연구)

  • 고석조;이민철;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.241-245
    • /
    • 1995
  • This paper shows that the proposed fuzzy-sliding mode for SCARA robot control could reduce chattering problemed in sliding mode control and is robust against parameter uncertainties. It was very small quantities of chattering in the fuzzy-sliding mode control conpared with that in sliding mode control with two dead-band. In here, the sliding mode control with two dead-band is the method to reduce some chattering by changing into a continuous variable lower control input gain when a state value in pahase palne converged sithin two dead-band. But, the fuzzy-sliding mode control for more reducing chattering is the method to change control input by slicing mode into that by fuzzy rule within two dead-band. Simulations show that the effect of reducing chattering by the fuzzy-sliding mode is superior to sliding mode control with two dead-band.

  • PDF