• 제목/요약/키워드: Fuzzy boundary

검색결과 139건 처리시간 0.025초

퍼지 추론에 의한 비디오 데이터의 샷 경계 추출 (Shot Boundary Detection of Video Data Based on Fuzzy Inference)

  • 장석우
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.611-618
    • /
    • 2003
  • 본 논문에서는 퍼지 추론 방법을 이용하여 비디오 데이터에서 샷(shot)의 경계를 검출하는 방법을 제안한다. 제안된 방법에서는 컷(cut), 페이드(fade), 디졸브(dissolve)와 같은 샷의 경계들을 검출하고, 이들을 그 종류별로 분류하기 위해 기본적으로 퍼지 연상 기억장치를 확장한 퍼지 추론 방법을 이용한다. 본 논문에서는 연속적인 두 영상 사이의 차이를 나타내는 여러 특징들을 입력 퍼지 집합으로 사용하고, 샷 경계들을 출력 퍼지 집합으로 사용한다. 본 논문의 퍼지 추론 시스템은 크게 학습 단계와 추론 단계의 두 단계로 구성된다. 학습 단계에서는 퍼지 소속 함수의 결정을 통해 시스템의 기본 구조를 초기화하고 이를 바탕으로 퍼지 연상 기억장치의 학습 기능을 이용하여 퍼지 규칙을 조건부와 결론부를 연결하는 가중치의 형태로 생성한다. 그리고 추론 단계에서는 구성된 퍼지 추론 모델을 이용하여 실제 추론을 수행한다. 실험에서는 제안된 샷 경계 검출 방법의 성능을 확인하기 위해서 뉴스, 영화, 광고, 다큐멘터리, 뮤직 비디오 등의 비디오 데이터들을 활용하였다.

뉴로-퍼지 추론 시스템을 이용한 물체인식 (Object Recognition Using Neuro-Fuzzy Inference System)

  • 김형근;최갑석
    • 한국통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.482-494
    • /
    • 1992
  • In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.

  • PDF

Effects of Uncertain Spatial Data Representation on Multi-source Data Fusion: A Case Study for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제21권5호
    • /
    • pp.393-404
    • /
    • 2005
  • As multi-source spatial data fusion mainly deal with various types of spatial data which are specific representations of real world with unequal reliability and incomplete knowledge, proper data representation and uncertainty analysis become more important. In relation to this problem, this paper presents and applies an advanced data representation methodology for different types of spatial data such as categorical and continuous data. To account for the uncertainties of both categorical data and continuous data, fuzzy boundary representation and smoothed kernel density estimation within a fuzzy logic framework are adopted, respectively. To investigate the effects of those data representation on final fusion results, a case study for landslide hazard mapping was carried out on multi-source spatial data sets from Jangheung, Korea. The case study results obtained from the proposed schemes were compared with the results obtained by traditional crisp boundary representation and categorized continuous data representation methods. From the case study results, the proposed scheme showed improved prediction rates than traditional methods and different representation setting resulted in the variation of prediction rates.

A Fuzzy Impulse Noise Filter Based on Boundary Discriminative Noise Detection

  • Verma, Om Prakash;Singh, Shweta
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.89-102
    • /
    • 2013
  • The paper presents a fuzzy based impulse noise filter for both gray scale and color images. The proposed approach is based on the technique of boundary discriminative noise detection. The algorithm is a multi-step process comprising detection, filtering and color correction stages. The detection procedure classifies the pixels as corrupted and uncorrupted by computing decision boundaries, which are fuzzified to improve the outputs obtained. In the case of color images, a correction term is added by examining the interactions between the color components for further improvement. Quantitative and qualitative analysis, performed on standard gray scale and color image, shows improved performance of the proposed technique over existing state-of-the-art algorithms in terms of Peak Signal to Noise Ratio (PSNR) and color difference metrics. The analysis proves the applicability of the proposed algorithm to random valued impulse noise.

Fuzzy Based Shadow Removal and Integrated Boundary Detection for Video Surveillance

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2126-2133
    • /
    • 2014
  • We present a scalable object tracking framework, which is capable of removing shadows and tracking the people. The framework consists of background subtraction, fuzzy based shadow removal and boundary tracking algorithm. This work proposes a general-purpose method that combines statistical assumptions with the object-level knowledge of moving objects, apparent objects, and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects and shadows are processed differently in order to supply an object-based selective update. Experimental results demonstrate that the proposed method is able to track the object boundaries under significant shadows with noise and background clutter.

경계층이 자동으로 조정되는 슬라이딩 모우드 제어기의 설계 (Design of a Sliding Mode controller with Self-tuning Boundary Layer)

  • 최병재;곽성우;김병국
    • 한국지능시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.3-12
    • /
    • 1996
  • 탁월한 비선형 제어 특성을 가지고 있는 슬라이딩 모우드 제어기는 제어 대상 플랜트의 모델링 과정에서 발생하는 부정확성과 각종 외란등으로 인하여 제어 입력 신호가 매우 높은 주파수의 비연속적인 특성을 가진다. 이를 방지하기 위하여 슬라이딩 평면에 얇은 경계층을 도입하는 방법을 많이 사용하고 있지만 이 경우에는 원하지 않는 정상 상태 오류가 유발될 수도 있다. 이때의 정상 상태 오차는 경계층의 폭에 비례해서 증가하는 특성이 있다. 본 논문에서는 정상 상태 오차와 제어 입력 신호의 불연속성 사이에는 구해지는 경계층의 폭을 정상 상태에 접근할수록 퍼지 규칙베이스에 의해 자동으로 감소시키는 자기동조형 경계층을 가지는 슬라이딩 모우드 제어기를 제안하였다. 그리고 제안된 알고리즘의 성능을 역진자 계통의 추적 제어 시뮬레이션을 통하여 입증하였다.

  • PDF

패턴인식을 위한 타원형 Fuzzy-ART (Ellipsoid Fuzzy-ART for Pattern Recognition Improvement)

  • 강성호;정성부;임중규;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.305-308
    • /
    • 2003
  • 본 논문에서는 Fuzzy-ART (Fuzzy-Adaptive Resonance Theory) 신경회로망의 패턴인식 성능을 개선하기 위해 Mahalanobis 거리를 이용한 타원형 fuzzy-ART 신경회로망을 제안한다. 제안한 방식은 벡터공간상에서 패턴의 영역을 규정하기 위해 Mahalanobois 거리 개념을 이용한다. 제안한 방식의 유용성을 확인하기 위해 얼굴인식에 적용하였으며, 기존의 방식과 비교 검토한 결과 유용성을 확인하였다.

  • PDF

퍼지신경회로망을 이용한 장애물 회피에 관한 연구 (A Study on the Obstacle Avoidance using Fuzzy-Neural Networks)

  • 노영식;권석근
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.338-343
    • /
    • 1999
  • In this paper, the fuzzy neural network for the obstacle avoidance, which consists of the straight-line navigation and the barrier elusion navigation, is proposed and examined. For the straight-line navigation, the fuzzy neural network gets two inputs, angle and distance between the line and the mobile robot, and produces one output, steering velocity of the mobile robot. For the barrier elusion navigation, four ultrasonic sensors measure the distance between the barrier and the mobile robot and provide the distance information to the network. Then the network outputs the steering velocity to navigate along the obstacle boundary. Training of the proposed fuzzy neural network is executed in a given environment in real-time. The weights adjusting uses the back-propagation of the gradient of error to be minimized. Computer simulations are carried out to examine the efficiency of the real time learning and the guiding ability of the proposed fuzzy neural network. It has been shown that the mobile robot that employs the proposed fuzzy neural network navigates more safely with and less trembling locus compared with the previous reported efforts.

  • PDF

연료분사식 자동차엔진의 퍼지가변구조 제어시스템 (Fuzzy Variable Structure Control System for Fuel Injected Automotive Engines)

  • 남세규;유완석
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1813-1822
    • /
    • 1993
  • An algorithm of fuzzy variable structrue control is proposed to design a closed loop fuel-injection system for the emission control of automotive gasoline engines. Fuzzy control is combined with sliding control at the switching boundary layer to improve the chattering of the stoichiometric air to fuel ratio. Multi-staged fuzzy rules are introduced to improve the adaptiveness of control system for the various operating conditions of engines, and a simplified technique of fuzzy inference is also adopted to improve the computational efficiency based on nonfuzzy micro-processors. The proposed method provides an effective way of engine controller design due to its hybrid structure satisfying the requirements of robustness and stability. The great potential of the fuzzy variable structure control is shown through a hardware-testing with an Intel 80C186 processor for controller and a typical engine-only model on an AD-100 computer.

Fuzzy Logic Based Sliding Mode Control

  • Kim, Sung-Woo;Lee, Ju-Jang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.822-825
    • /
    • 1993
  • A fuzzy logic controller derived from the variable structure control (VSC) theory is designed. Unlike the conventional design of the fuzzy controller, we do not fuzzify the error and the rate of error, but fuzzify the sliding surface. After the fuzzy sliding surface is introduced, the fuzzy rules are defined based on the sliding control theory. It will be shown this sliding mode fuzzy controller is a kind of VSC that introduces the boundary layer in the switching surface and that the control input is continuously approximated in the layer. As a result we can guarantee the stability and the robustness by the help of VSC, which were difficult to insure in the past fuzzy controllers. Simulation results for the inverted pendulum will show the validity.

  • PDF