Abstract
In this paper, the fuzzy neural network for the obstacle avoidance, which consists of the straight-line navigation and the barrier elusion navigation, is proposed and examined. For the straight-line navigation, the fuzzy neural network gets two inputs, angle and distance between the line and the mobile robot, and produces one output, steering velocity of the mobile robot. For the barrier elusion navigation, four ultrasonic sensors measure the distance between the barrier and the mobile robot and provide the distance information to the network. Then the network outputs the steering velocity to navigate along the obstacle boundary. Training of the proposed fuzzy neural network is executed in a given environment in real-time. The weights adjusting uses the back-propagation of the gradient of error to be minimized. Computer simulations are carried out to examine the efficiency of the real time learning and the guiding ability of the proposed fuzzy neural network. It has been shown that the mobile robot that employs the proposed fuzzy neural network navigates more safely with and less trembling locus compared with the previous reported efforts.