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Abstract - A fuzzy logic controller derived from the vari-
able structure control (VSC) theory is designed. Unlike
the conventional design of the fuzzy controller, we do not
fuzzify the error and the rate of error, but fuzzify the
sliding surface. After the fuzzy sliding surface is intro-
duced, the fuzzy rules are defined based on the sliding
control theory. It will be shown this sliding mode fuzzy
controller is a kind of VSC that introduces the boundary
layer in the switching surface and that the control input
is continuously approximated in the layer. As a result
we can guarantee the stability and the robustness by the
help of VSC, which were difficult to insure in the past
fuzzy controllers. Simulation results for the inverted

pendulum will show the validity.

1. Introduction

Recently a lot of design efforts to control complex systems
or poorly modeled systems using fuzzy logic have been done
and these have fruited successfully in many areas [1]). How-
ever the design procedure for fuzzy logic controller is not
well defined yet and it depends greatly upon the expert's
knowledge or trial-and-errors. Further more, due to the lin-
guistic expressions of the fuzzy control we can hardly say
the stability or the robustness of the fuzzy controlled system.
Thus we need a design method for the fuzzy controller that
is more structured and can guarantee the stability and the
robustness.

In many cases the fuzzy logic controller is designed us-
ing the error and the rate of error [2],[3]. The error and the
rate of error are represented graphically in the phase plane,
so one can design the fuzzy logic controller systematically if
he uses the phase portrait method. If a switching line is in-
troduced and the fuzzy rules are defined according to the
switching line, then this fuzzy controller behaves similarly
to the sliding mode controller [4].

The sliding mode control method can guarantee the ro-
bustness of the system involving the disturbances or noises,
but this method uses drastic changes of the control input
which make the chattering phenomena. The chattering may
excite the high frequency components of the system that is
neglected when modelling. In order to avoid the chattering
problem, the boundary layer is introduced and the control
input is properly approximated in the boundary layer (5].

In this paper, we adopt the advantages of the sliding
mode control theory and apply them to design the fuzzy
logic controller. Instead of fuzzifying the error and the rate
of error, we fuzzify the sliding surface so that we design a
fuzzy sliding mode controller. This proposed controller can
get rid of the chattering problem and guarantees the stability
and the robustness. We will show these results are due to
the facts that the fuzzy sliding mode controller has the
boundary layer and the control input is continuous approxi-
mation in the boundary layer.

2. Sliding Mode Controller

Assume the nth order system as follows

X = f(x,1) +u(t) +d(1) M
x" D] is the state vector, and
d(t) and u(?) are the disturbance and the control input,

where x" =[x %

respectively. The nonlinear function f(x,) is given by
F0 = Foxn+ A (x,0), )
where f“(x,t) is the estimation of f(x,?) and Af(x,t) repre-
sents the model uncertainty. The disturbance and the model
uncertainty are bounded below F and D respectively,

18F (x,0)| S F(x,1), &)
[d@)| < D(x,t).

Define the tracking error of a state x as follows

e() = x(6) — x, (). 1C9)
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Then the control problem is for the state x to track the de-
sired state x,(f) even under the model uncertainty and the

disturbance. Now define the sliding surface s(x,f) = 0 by
the following equation

d (n-1)
S(x,t)=(——-+l) e. (&)
dr

The tracking control is to place the error e on the sliding
surface. The control input is made to satisfy the following
sliding condition,

dr.
%Z[s x,n]<-1ls. (6

nz0
Consider the second order system without a loss of general-

ity as follows,
@) = f(x,n)+u+d(z). ¥
The sliding surface is
s=Ae+é ®)
and § = Aé + X(#) - X,(¢). From the sliding condition of (6),
we get
s-§=s5-(Ae+ fx,0)+u+d—%,()) < -nlsl. )
Let the control input be u =& — K(x,¢)-sgn(s), then

u=(=F(x,1) - Aé +%,(1)) - K(x, )sgn(s) (10)
where
B 1 for s>0
sgn(s) = ~1 otherwise’

We get the range of K(x,7) from the equations (9) and (10),
Kx,0)2 F(x,t)+ D(x,t)+7. (11
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3. Fuzzy Sliding Mode Controller

Now introduce the fuzziness to the sliding surface defined in
previous section. Instead of the crisp sliding surface s=0,
define a linguistic value ZERO and consider the fuzzy slid-
ing surface § =ZERO where § denotes the fuzzy variable
corresponding to s. This is shown in Figure 1 with the tri-
angular membership function.

We then partition the e —¢ plane into three parts such
that § =ZERO, § =NEGATIVE and § =POSITIVE. Accord-
ing to the control input of equation (10), u is partitioned into
three parts, i ={SMALL, MEDIUM, BIG} {Figure 2.].

Define fuzzy rules as follows

[Rule 1] If s is ZERO then u is MEDIUM.
[Rule 2] If s is NEGATIVE then u is BIG.
[Rule 3] If s is POSITIVE then u is SMALL.

The inference uses Mamdani's MAX-MIN reasoning and the
defuzzification is the center-of-area (COA) method [2]. The
result of the inference for every s is shown in Figure 3. We
see that the control input is continuously approximated in
the boundary layer. For more perspective analysis, the
result of the fuzzy rules within the boundary layer is in-
ferred explicitly as follows:

i+ K 5 for z<-1
12+K£2%+—)1 for -1<2<0
u= 2 rz- (12)

P EiCb) Ry

. zt—z-1

u-K for z>1

where z=s5/0.
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(b) Control input

Figure 1. Fuzzy sliding surface and its membership

Figure 2. Membership functions for case of three rules
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Figure 3. The result of the inference

4. Simulation

The inverted pendulum is considered to verify the perform-
ance of the fuzzy controller with the fuzzy sliding line
[Figure 4]. The nonlinear dynamics of this systems is
governed by

mi*5+bx +mglcos(x) = u+d(t,x,%) (13)

where x and d('t,x, x) denote the joint angle and the distur-
bance, respectively. For the simplicity of the simulation, as-
sume the parameters of (13) are

m={=b=g=1 (14)
and the disturbance satisfies that
d(t,x,%)=sin(31) +%. (15)
Then equation (13) results in
¥=-X—cos(x)+u+d(t, x,%). (16)

Comparing (13) with (1) and (2), we get the following,
f(x,2)=0, F(x,t)=D(x,t) =|x|+1. a7n
From equation (10) with A =20, 1= 0.1, the control input is
u =%, —20é — (2|%[+2.1)-sgn(e + 20¢) (18)
where the desired trajectory is given by x,(f) = sin(7t/2).

In analogy with the rules in Section 3, define the
following 5 rules and their membership functions [Figure
51

[Rule 1] If 5 is ZR then u is MEDIUM.

[Rule 2] If s is NB then u is BIGGER.

[Rule 3] If s is NM then u is BIG.

[Rule 4] If sis PM then u is SMALL.

[Rule 5] If sis PB then u is SMALLER.
We use this five rules for following simulation. The result
of the inference using the new five rules are very similar to
that of three rules, so the result is not printed here.

Figure 6 and Figure 7 show the simulation results. The
former is for the conventional VSC and the latter is for the
sliding mode fuzzy controller. We see that the chattering is
eliminated while the tracking error still remains small.

[z 770722 a2z

Figure 4. Inverted Pendulum System
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Figure 5. Membership functions for the case of five rules

5. Conclusions

In this paper, we design the fuzzy logic controller based on
the sliding mode control theory. Unlike the conventional
fuzzy logic controller, we do not fuzzify the error and the
change of error but the sliding surface s. This makes the
controller design more structured and simpler. We can guar-
antee the stability and the robustness of the proposed fuzzy
controller since it is actually a variable structure controller
whose input is continuously approximated in the boundary
layer. The fuzzy sliding mode controller eliminates the
chattering problem. We verified the validity of the proposed
idea by simulating for an inverted pendulum with the distur-
bance.
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Figure 6. Case of the conventional VSC
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Figure 7. Case of fuzzy sliding mode control
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