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Abstract : As multi-source spatial data fusion mainly deal with various types of spatial data which are

specific representations of real world with unequal reliability and incomplete knowledge, proper data
representation and uncertainty analysis become more important. In relation to this problem, this paper
presents and applies an advanced data representation methodology for different types of spatial data such
as categorical and continuous data. To account for the uncertainties of both categorical data and continuous

data, fuzzy boundary representation and smoothed kernel density estimation within a fuzzy logic framework
are adopted, respectively. To investigate the effects of those data representation on final fusion results, a
case study for landslide hazard mapping was carried out on multi-source spatial data sets from Jangheung,
Korea. The case study results obtained from the proposed schemes were compared with the results
obtained by traditional crisp boundary representation and categorized continuous data representation
methods. From the case study results, the proposed scheme showed improved prediction rates than
traditional methods and different representation setting resulted in the variation of prediction rates.
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1. Introduction

Nowadays, there has been an increased concern
regarding multi-source spatial data fusion of
geoscientists or geologists who commonly deal with
spatial data and routinely analyze them in integrated
manners, as well as remote sensing and related
communities. Since most geoscience phenomena are
representatives of the combined results of various

physical parameters or variables, it is reasonable to
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consider multi-source spatial data for an integrated
analysis. For geological applications such as mineral
potential mapping or landslide hazard mapping,
various theoretical frameworks and case studies have
been proposed and carried out (Moon, 1990; Chung
and Fabbri, 1999; Park er al., 2003a, 2003b).
According as spatial data fusion tasks become
more complicated, uncertainty analysis as well as the
development of effective data fusion methods also

becomes more important. In general, there are three
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sources of uncertainty in spatial data fusion. The first
source of uncertainty is introduced to the data from
the beginning when data acquisition is carried out.
The second source of uncertainty is the one
introduced during the information representation and
fusion of the information. The third source of
uncertainty is related to interpretation of the final
fusion result with respect to the target adopted
(Moon, 1998; Park, 2004). Especially, uncertain or
erropeous information representation may propagate
through the integration or fusion step and as a result,
the final decision-making may be severely affected
by the uncertain information representation. From
perspectives on available data types for any multi-
source data fusion tasks, most geological applications
generally include the different types of data such as
categorical (e.g. geology, forest, soil maps) and
continuous data (e.g. geophysical exploration data,
topographic data) and thus effective information
representation for those different types of data is the
cornerstone of geological multi-source spatial data
fusion. Traditional researches for landslide hazard
mapping did not consider those sources of
uncertainty. Especially, continuous data first were
converted into some categorized classes as if they
were categorical data. Subjective determination of
class boundary resulted in loss of valuable
information (Park et al., 2005).

In relation to the second source of uncertainty,
advanced information represeniation methodologies
have been proposed and applied separately by our
previous research. Though the methodologies have
the same theoretical frameworks such as fuzzy logic
based on likelihood ratio functions, they are designed
to deal with categorical and continuous data
separately and thus detailed processing steps are quite
different. Park et al.(2003a) presented a fuzzy object
representation methodology to account for the

fuzziness or uncertainties of boundary in categorical

data. Through a case study from Boeun, Korea for
landslide hazard mapping, the better prediction
capability was obtained as compared with traditional
crisp boundary representation. For continuous data
representation, fuzzy continuous information
representation based on non-parametric density
estimation was also proposed by Park er al.(2005).
This methodology can directly use the original scale
of the continuous data and thus prevent any distortion
or loss of information.

This paper investigates the effects of uncertain
information representation on multi-source data
fusion by dealing simultaneously with both above
categorical and continuous uncertain information
representation methodologies. The our advanced
information representation methodologies have been
tested on a multi-source spatial data set including
both categorical and continuous data from
Jangheung, Korea for landslide hazard mapping. The
effects of them on final fusion results were

quantitatively evaluated by cross validation.

2. Problem Formulation and
Methodology

1) Problem Formulation

The advanced information representation
methodologies presented in this paper will be
described in terms of landslide hazard mapping.
However, the application to other any predictive
multi-source data fusion tasks such as mineral
potential mapping is straightforward without loss of
generality.

The final goal of multi-source spatial data fusion
for landslide hazard mapping is to obtain information
for decision-making (e.g. which areas will be

susceptible to future landslides? or How good is the
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Fig. 1. Work process applied in this study.

fusion result?) by integrating multi-source spatial data
related to landslide occurrences. To obtain above
information, various multi-source spatial data fusion
models including information representation and
integration steps can be applied.

Among various spatial data fusion models, a fuzzy
logic model is adopted in this paper. The main reason
for choosing the fuzzy logic model as a main
framework is that the model can provide a theoretical
framework for representation of partial or multiple
membership degree for categorical data. To derive
the fuzzy membership functions as information
representation functions, the likelihood ratio functions
based on two empirical frequency or density
distribution functions (Park et al., 2003b) are
employed. Unlike traditional fuzzy membership
function representation, however, the fuzzy
membership functions for categorical and continuous
data are separately constructed. Detailed theoretical
backgrounds will be described in the next two

sections (Fig. 1).

2) Fuzzy Boundary Representation for
Categorical Data

As for categorical data, fuzzy boundary

representation is applied to reflect the fuzziness or
uncertainty of boundaries in them. Uncertainties of
the categorical data usually result from attribute
values themselves or boundary positions. If the
categorical data are generated from the sparse ground
samples or other observations (e.g. land-cover/use
maps obtained from remote sensing data
classification), the uncertainty of the attribute values
may arise. This uncertainty can be modeled by using
geostatistical spatial uncertainty estimation methods
such as stochastic simulation (Goovaerts, 1997).
Another source of uncertainty in the categorical data
is one of boundaries that are the edges of
homogeneous areas or attributes. This uncertainty
arises during the generation of the digital categorical
data from paper maps. During this rasterization
procedure in GIS, boundaries of zero width are
commonly assumed. However, this crisp boundary
representation fails to model the intermediate
boundaries of attributes and the inaccuracy in
boundary positions (Park et al., 2003a).

For categorical data representation, the proposed
method generates two kinds of fuzzy membership
functions for a boundary membership function and a
target membership function that describes how strong
the data are related to the target proposition (step 1
and step 2), and integrates them for final fused
membership functions (step 3). The basic assumption
of this approach is that each category or attribute in a
categorical data has a core and a transition zone.

At the first step, the fuzzy membership functions
that account for the fuzziness at boundary positions
are constructed. First, the fuzzy transition zone in
which the width is d is defined from polygon
boundaries by considering the scale and resolution of
the categorical map. Then, as a semantic fuzzy
membership function for fuzzy boundary, a bell-
shaped model is adopted, where the membership

function is defined as:
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(1-p*l-(C+dr)-x1

) (Crdr 4 - C-an
x € [C-dl2,C+df2] 1
.0 = A-p"" - C+a))

A-PFL - (C+dR)V +7F1(C- dr)- A1
X € [C-d2,C+d?)]

where /g (x) and /g, (x) represent fuzzy membership
functions for two categories or attributes By, and By,
in a certain categorical map, respectively. C is the
boundary position between the two attributes By and
B. Also, 4 is the sharpness parameter and y is the
inflection parameter of a fuzzy membership function.

The two models represent monotonically
decreasing and increasing parts of the membership
function, respectively. Sharpness and inflection are
the two parameters governing the shape of the
function. On a boundary position, these models have
a value of 0.5 under the assumption that the boundary
position can belong to one of the two neighboring
attributes and has a neutral value of 0.5.

At the second step, the target membership
functions that account for how strong the data are
related to the target propositions are constructed.
These fuzzy membership functions are computed
from the likelihood ratio functions. To sufficiently
separate hazardous and non-hazardous areas, input
spatial data should effectively reveal the different
characteristics between those areas. The likelihood
ratio function can highlight the contrast. Detailed
procedures for the likelihood ratio functions can be
referred to Park et al. (2003b).

After getting the two kinds of membership
functions, then final fuzzy membership functions are
computed by computing a weighted estimate over the

boundary zone:
].Z,UT,, X U,

HFFy= ——— 2
]Z/lB[j

where fipr, is a final fuzzy membership function, u7,
is a target membership function for relative landslide
levels, and (g, is a boundary membership function in

the j* class attribute of /" categorical map.

3) Smoothed Kernel Representation for
Continuous Data

In relation to continuous data representation, most
uncertainty results from the generation procedure of
exhaustive data from sparse point samples or contour
lines. This type of uncertainty can be modeled by
advanced geostatistical techniques based on spatial
correlation models (e.g. kriging, stochastic
simulation). New information generation from
existing continuous data such as slope map
generation from DEM may contain different source
of uncertainty. Those two types of uncertainty are
related to data acquisition and preparation.

Another uncertainty may arise during the
information representation. This study will mainly
deal with this type of uncertainty. In traditional works,
most researches first converted continuous data sets
into some categorized classes. Binary or multi-class
representation is, however, inappropriate, since it
requires optimal discretization and thus inevitably
results in distortion and loss of valuable information.

To overcome those limitations, this study adopted
a methodology proposed by Park er al. (2005), which
can directly use original continuous data without their
conversion into categorized data. This methodology
is theoretically based on a smoothed kernel density
estimation approach. By using a predefined kernel
function (in our case, Gaussian kernel function), this
approach approximates a density distribution via a
linear combination of kernels centered on the
observed landslide locations.

Given a set of N samples of X, drawn from a true
density distribution p(X), the smoothed kernel

approach derives an estimate p(X) from the
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superposition of an appropriate kernel function k(-)
which is applied to each sample considered and acts

as smoothing operators (Parzen, 1962):
. 1 X
PO = 7 ZMX-X) ©

After obtaining the two density distributions (e.g.
landslide and non-landslide areas), the fuzzy
membership functions based on the likelihood ratio
functions are derived.

In this approach, the quality of density estimation
only depends on the spread parameter (k) that
controls how much to smooth. If % is too small, the
estimate will be very spurious. On the other hand, if /
becomes large, important spatial variation may be

lost, and all detail will be obscured due to over-

smoothing. To examine the effects of various values
of & on the final fusion results, this study will apply
various settings of /2 and determine an optimum value

of h which shows the highest prediction capability.

3. Case Study

1) Study Area and Data Sets

The Jangheung area in Korea, which had much
landslide damage in 1998, was selected as the study
area (Fig. 2). The study area covers approximately
37.29 km? and has 1,491,443 pixels with a spatial
resolution of Sm by 5Sm. The spatial database used in
this study is listed in Table 1. Multi-source spatial data

Fig. 2. Location map of the study area and landslide locations draped over KOMPSAT EOC imagery.

Table 1. Description of the data sets used in the study area.

Data \ Map scale Description Source
Landslides location Point Point coverage Remote sensing images and field survey
Elevation 1:50,000 Line coverage Digital topographic map
Slope 1:50,000 Line coverage Digital topographic map
Aspect 1:50,000 Line coverage Digital topographic map
Forest type 1:25,000 Polygon coverage Digital forest map
Soil 1:50,000 Polygon coverage Digital soil map
Lineament density Polygon coverage Remote sensing images and visual interpretation
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sets related to landslide occurrences consist of two
categorical data (forest type and soil maps) and four
continuous data (elevation, slope, aspect and lineament
density maps). The forest type and soil information
were extracted from a 1:25,000 scale forest map and a
1:50,000 scale reconnaissance soil map, respectively.
Topographic information was obtained from a 1:25,000
scale digital topographic map and the lineaments
extracted from visual interpretation of remote sensing

images were used to generate the density map.

2) Information Representation and Fusion

For categorical data representation, two kinds of

fuzzy membership functions described in Section 2.2
were computed. As model parameters for boundary
membership functions, the values for the sharpness
and inflection parameters were 1.9 and 0.5,
respectively. Four different values of d (0, 12, 24 and
48) were examined to investigate the effects of fuzzy
boundary representation. d values that are greater
than 48 were not considered, because the values are
so large that small polygons are disappeared. The
final combined fuzzy membership functions were
generated by using equation (2) and four different
fuzzy membership functions for the forest type map

are shown in Fig. 3. If 4 is 0, it means that the

(d)
Fig. 3. Fuzzy membership functions for the forest type map. (a) =0, (b) d=12, (c) d=24, and (d) d=48.
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categorical map has a crisp boundary (Fig. 3 (a)). The
larger d is, the wider the transition zone will be.
According to the increase of the boundary width, the
fuzzy membership functions show gradual changes or
smoothing effects.

For continuous data representation, four different h
values (0.5%, 2%, 4% and 8% of the total range of
data for the Gaussian kernel function) were
considered. The original continuous data were also
converted to the categorized data with several classes
for comparison. Fuzzy membership functions for four
cases of smoothed kernel density estimation and the
categorized continuous data are shown in Fig. 4.
According to an increase of the value of A, the fuzzy
membership function values tend to be smoothed as
expected. Those smoothing effects also resulted in the
decrease of the maximum membership value. In all
data layers, the fuzzy membership function values of

categorized continuous data lie in A values between

©
w

08 | & Categorized ' ‘ & ! ’\
: $=0.5%
i _ k d

)0 " A XN
fos |- e // AR X
E 04 A
zos / Ao \
!
Lo2 ,/,,/0”'4 \\ ’\

01

00 /"/ : \‘ S

©
o

130 175 220 265 310 355 400 445 490 53
Elevation

@
09
& Categorized
08 $=0.5%

g 07 5=2%

2 o6 . s=4%

a DA W) =~ =8%

?, os /L_‘v _f;,z&\ | 5=8%

§ 04 ’é%(/% Noeesy ¢

£ X N

03 ;

L AN
o ‘ N\
0.0

0 45 90 135 180 25 270 315 360
Aspect
©

0.5% and 8%.

After data representation, all fuzzy membership
functions were experimentally integrated by using a
fuzzy algebraic sum operator. Before integrating ail
input data, two categorical data sets and four
continuous data sets were individually integrated to
investigate two different data representation
methodology designed for categorical and continuous
data sets. For visualization, the integrated fuzzy
membership function values were transformed to
relative rank values with the same number of pixels at
each class level.

Some fusion results are shown in Fig. 5. The
fusion result using two categorical data sets in case of
a d value of 48 shows relatively smoother patterns
(Fig. 5(a)). The original polygon boundaries are much
smoothed. The fusion results using continuous data
sets (h=4%) and all data sets (d=48 and h=4%)
showed similar overall patterns (Fig. 5(b), (c)). High
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Fig. 4. Fuzzy membership functions for (a) the elevation map, (b) the slope map, (c) the aspect map, and (d) the lineament density map.
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Fig. 5. Fusion results. (a) Fusion of two categorical data sets (d = 48), {b) fusion of four continuous data sets (h = 4%) d=12, and
(c) fusion of all data sets (0= 48 and h = 4%). The background is a shaded relief map and black dots denote landslides.

hazardous areas are located in the central and western

parts of study area. From a visual interpretation, it is

not feasible to evaluate the fusion results

quantitatively and anther procedure for quantitative

interpretation and comparison is required.

3) Validation Results

To quantitatively investigate the effects of the
width of fuzzy boundary and spread parameters in
smoothed kernel density estimation on the fusion
result, a cross-validation approach was repeated for a
series of transition zones having various sizes (d = 0,

12, 24 and 48) and of various spread parameter

values (h=0.5%, 2%, 4% and 8% of the total range of
data), respectively.

The cross validation approach adopted here is
based on random spatial partitioning of past
Iandslides. In the study area, the landslides were
induced by one time event, a heavy rainfall during
some period in 1998 and there are no records of
landslides that occurred previous or after 1998. Also,
it was not possible to get any information on
neighboring areas at the time of preparing the data.
Thus, it is not feasible to carry out time or space
partitioning approach. Instead, a random partitioning

approach for validation was carried out. First, the past

~400-



Effects of Uncertain Spafial Data Representation on Mulfi-source Data Fusion: A Case Study for Landslide Hazard Mapping

landslide landslides were randomly divided into 2
disjoint sets of equal size. Then the fusion maps were
generated 2 times using one group, each time with the
remaining occurrences held out as a validation set. By
comparing the fusion map with the validation set, two
relative landslide hazard values at each validation set
can be obtained. Finally, the prediction rate curve
(Chung and Fabbri, 1999) was computed from those
relative landslide hazard values in all past landslide
locations. Park et al.(2005) applied the same random
partitioning approach for validation. However, only
one integrated result by using a training group was
generated and then it was compared with a validation
group. As a result, the prediction rates computed from
the one validation group which has the half of the
total number of past landslides in the study area may
be overestimated or underestimated. On the contrary,
in our case, two integrated results were generated by
changing the training group to the validation one.
Thus, quantitative computation of prediction rates in
this study is more general estimation procedure than
previous study.

As another useful quantitative measure for
interpreting the prediction rate curve, slope values
(Park er al., 2005) were computed for each 5% in the
curve. These slope values represent the increment of
the prediction rate changes. Theoretically speaking,
the prediction rate curve should be a monotonically
decreasing function. To satisfy this condition, the
slope value should also be a monotonically
decreasing one. A value of 1 means that the
prediction pattern in that class is a random one and
thus it has no significance. The more the slope value
exceeds 1, the stronger is the significance of the
prediction result. For the prediction rate curves to
show reasonably significant results, the slope value
corresponding to the most hazardous class should be
much larger than that for the next lower hazard class.

That is, the most hazardous class should include most

of the landslides in it, and will occupy small areas
throughout the study area.

To investigate the effect of fuzzy boundary
representation, two categorical data were first
considered and the prediction rate curves were
obtained (Fig. 6). When applying fuzzy boundary
representation, the prediction rates were higher than
the one by traditional crisp boundary representation.
According to the increase of the size of transition
zones, the prediction rates were improved, that is, it
was further away from the diagonal line. A d value of
48 showed the best performance rates. In the
uppermost categories (top 5% area), significant
improvements in the performance rates, of about 15%
were achieved. In this case, if the most hazardous 5%
of the area is taken, then about 25% of landslides are
located in the area. Those improvements were
observed for the top 20% of categories of hazard
level, or proportion of the study area. This
improvement of the performance rates would be
explained by the information content. Since the use of
fuzzy boundary would include useful information
about the nature of spatial change and spatial context,
this effect results in improvement of the prediction
rates. Another possible explanation is that smoothed
patterns in the transition zones were strengthened

through the rank-based visualization procedure.
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Fig. 6. Prediction rate values in the top 30% classes (5% apart)
for the fusion results using categorical data.
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Fig. 7 shows the slope values of prediction rates for
4 cases. In the case of d=48, the performance rates
showed the monotonically decreasing increment and
the slope value for the most hazardous 5% class was
the highest. According to the increase of portion of
the whole study area, the decreasing rates are also
much greater than those of other d values. In the case
of d=0, the slope values showed a zigzag behavior
and thus the fusion result is somewhat unstable. From
the previous experiences, the fusion result using only
categorical data does not satisfy the monotonically
decreasing behavior. It results from sudden change of
attribute on a boundary position. A first conclusion
derived from this validation is that representation of
the fuzzy boundary can effectively depict natural
change of spatial phenomena and increase the quality
of the model and the prediction rates.

To investigate the effect of the application of the
smoothed kernel method for direct use of continuous
data, four continuous data sets were considered and
the results were compared with those of the case of
categorized continuous data. The prediction rate
curves of the fusion results using continuous data are
shown in Fig. 8. The prediction rates by smoothed
kernel estimation were higher than the one by
traditional categorized representation of continuous
data. In the uppermost categories, significant

improvements in the performance rates, about 10% ~

0d=0

Bd=12
BHd=24
Od=48

Slope value
w

0.10 015 0.20 0.25 0.30
Portion of the whole study area assigned as hazard

Fig. 7. Slope values in the top 30% classes (5% apart) for the
fusion results using categorical data.

15% were achieved. Except £=0.5%, according an
increase of k values, the differences were not great
and similar performance rates were obtained. For
these 4 values that are great than 0.5%, about 38% of
the landslides in the validation group were predicted
from the uppermost 10% class, which occupy 10% of
the whole study area. In the case of h=0.5%, the
prediction rate was lower than the results obtained
with larger values of h.

The conclusion derived from visual and/or
quantitative interpretations of the prediction curves
was confirmed through the analysis of the slope
values shown in Fig. 9. The slope values for the most
hazardous 5% class computed from the fusion results
derived by smoothed kernel estimation were higher
than those obtained from categorized continuous data.

Especially, i=4% gave the highest slope value for the
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Fig. 8. Prediction rate values in the top 30% classes (5% apart)
for the fusion results using continuous data.
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Fig. 9. Slope values in the top 30% classes (5% apart) for the
fusion results using continuous data.
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top 5% hazard class.

Finally, the cross validation procedure using
categorical and continuous maps was repeated.
Because /4 values that are greater than 0.5% showed
the similar performance rates, an & value was set to
4% for continuous data.

When integrating all data sets, the overall pattern
of the prediction rate curve is very similar (Fig. 10).
By adding continuous data, the sudden change of the
performance rate was reduced. The difference of the
performance rate in the top 10% class is relatively
great. As with the results for categorical data, the
order of the performance rates in that class was
preserved (Fig. 10 and Fig. 11). That is, in case of
d=48, its performance rate was the highest and the

result obtained through categorized continuous data
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Fig. 10. Prediction rate values in the top 30% classes (5% apart)
for the fusion results using all data.

ma=0 |
mg=12
@a=2a-
D4=48

“.

.08 0.10 0.15 0.25 0.30
Portion of the whole study area assigned as hazard

o
T

Slope value
£

w
T

N
T

Fig. 11. Slope values in the top 30% classes (5% apart) for
the fusion results using all data.

and crisp boundary representation showed the worst
performance rate. The improvement of the

performance rate was about 5%.

4. Conclusions

To investigate the effects of uncertain spatial data
representation on the fusion results, this paper
presented an advanced fuzzy information
representation methodology and applied to real multi-
source spatial data sets for landslide hazard mapping.
Unlike traditional fuzzy approaches that have used
the same data representation methods and thus could
not consider the different characteristics of
categorical and continuous data sets, fuzzy boundary
representation for categorical data and smoothed
kernel density estimation for continuous data within a
fuzzy logic framework were separately presented and
tested.

From the case study results, different data
representation schemes resulted in different
prediction capabilities. In the case of categorical data
representation, fuzzy boundary representation with
core and transition zones showed higher prediction
rates than traditional crisp boundary representation.
The fuzzy boundary concept would be extended to
generate an environmental impact map predicting
areas vulnerable to environments where the scales
and the resolutions of input layers are different. The
smoothed kernel density estimation for continuous
data representation could relate to the continuous data
to the target proposition without loss of information
and higher prediction rates than traditional
categorized data representation of continuous data.
The combined effects also preserved the results of
those two different data representation schemes. The
case study showed improved prediction rates (over

5%) than traditional subjective ad-hoc techniques. It
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is expected that these methods can be applied to
general or specific geoscientific applications handling
multi-source spatial data such as mineral potential
mapping or suitable site selection etc, although the
proposed methods were applied and tested to
landslide hazard mapping.

This study only dealt with boundary representation

for categorical data and direct use of continuous data -

among many issues for uncertainty analysis. As
discussed in Chapter 2, uncertainty of attribute values
generated from sparse point values or contour lines is
commonly faced in any spatial data analysis. Most
cases generated only one map and used it under the
assumption that the map would represent optimal real
phenomena. However, that map inevitably includes
estimation or modeling uncertainty. To effectively
model the uncertainty related to the data generation
step, geostatistical simulation, which can generate
multiple realizations, each representing alternative
representations of the unknown truth, will be applied
to multi-source data representation and their effects

on the fusion results will also be investigated.
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